最短路算法模板

本文介绍了最短路算法,包括Dijkstra算法用于正权图的单源最短路计算,适用于有向图和无向图,时间复杂度为O(mlogn);SPFA算法能处理负权边并能检测负圈,最坏时间复杂度为O(mn),但实际效率较高;最后讲解了Floyd算法,用于求解图中任意两点间的最短路径。
摘要由CSDN通过智能技术生成

首先是Dijkstra算法,Dijkstra算法适用于边权为正的情况,它可用于计算正权图上的单源最短路,即从单个源点出发,到所有结点的最短路,该算法同时适用于有向图和无向图。给出代码的时间复杂度为O(mlogn),m为边的数目,n为点的数目。

struct Edge{
	int from,to,dist; //从点from到to点距离dist 
	Edge(int u,int v,int d):from(u),to(v),dist(d){} //初始化边 
}; 

struct HeapNode{ 
	int d,u; //d为从s点到u点的的距离 
	bool operator < (const HeapNode& rhs) const{
		return d > rhs.d;  //定义最小堆 
	}
};
//把该算法用到的数据结构封装到一个结构体中 
struct Dijkstra{
	
	int n,m;
	vector<Edge> edges;
	vector<int> G[maxn];
	bool done[maxn];  //是否已永久标号 
	int d[maxn];      //s到各个点的距离 
	int p[maxn];      //最短路中的上一条弧 
	
	//初始化 
	void init(int n){ 
		this -> n = n;
		for(int i = 0; i < n; i++){
			G[i].clear();
		}
		edges.clear();
	}
	
	//添加边 
	void AddEdge(int from,int to,int dist){
		edges.push_back(Edge(from,to,dist));
		m = edges.size();
		G[from].push_back(m - 1);
	}
	
	//主体算法 
	void dijkstra(int s){
		priority_queue<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值