OpenCV中HOG特征的提取实现

本文介绍了在OpenCV 2.3.1中如何实现HOG(Histogram of Oriented Gradients)特征的提取,包括相关头文件、计算梯度的函数、HOGDescriptor参数、归一化过程以及检测函数的使用。通过理解和应用这些函数,可以进行行人检测或其他对象检测任务。
摘要由CSDN通过智能技术生成

OpenCV版本2.3.1

hog头文件:opencv\modules\objdetect\include\opencv2\objdetect中的objdetect.hpp

hog实现文件:opencv\modules\objdetect\src中的hog.cpp

参考文献:Histograms of Oriented Gradients for Human Detection 作者 Navneet Dalal and Bill Triggs


关于hog中HOGDescriptor的参数。参考博文http://blog.csdn.net/raodotcong/article/details/6239431


窗口大小winSize


块大小blockSize


cellSize



winsize,blocksize,blockstride,cellsize的关系必须满足条件:

blockSize.width % cellSize.width == 0 &a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值