专题讲座1 高级数据结构 学习心得

本文深入探讨了二维树状数组(包括单点修改、区间查询以及区间修改)和线段树(包括模板及区间修改、单点查询)的数据结构,并通过实例解析了它们的实现细节。文章还介绍了如何理解和运用pushdown、pushup、分块以及莫队算法,同时展示了如何解决逆序对、逛公园问题等典型应用题,有助于深化对这些高级数据结构的理解。
摘要由CSDN通过智能技术生成

首先是纯纯坐牢(没doge)

题目地址:

ZJNU-高级数据结构

目录

二维树状数组(单点修改,区间查询)

二维树状数组(区间修改,单点查询)

二维树状数组(区间修改,区间查询)

线段树

例题:P3373 【模板】线段树 2

例题:P1908 逆序对

例题:P4513 小白逛公园


DAY 7.11

目前有点感觉的是:

二维树状数组的(区查单改,单查区改),线段树模板,稍微复杂一点的线段树模板,理解pushdown,pushup,分块和莫队的思路和时间复杂度(对勾函数的感觉),维护前缀和的线段树,权值线段树的一点点。。

下面是板子:

板子改进了一下,对称美观,增加了可读性

二维树状数组(单点修改,区间查询)

int a[M][M];
int n,m;
int lowbit(int x){
	return x&(-x);
}
void add(int x,int y,int w){
	while (x<=n){
		int i=y;
		while (i<=m){
			a[x][i]+=w;
			i+=lowbit(i);
		}
		x+=lowbit(x);
	}
}
int sum(int x,int y){
	int ans=0;
	while (x>0){
		int i=y;
		while (i>0){
			ans+=a[x][i];
			i-=lowbit(i);
		}
		x-=lowbit(x);
	}
	return ans;
}
int query(int x1,int y1,int x2,int y2){
	return sum(x2,y2)-sum(x1-1,y2)-sum(x2,y1-1)+sum(x1-1,y1-1);
}
void work(){
	cin>>n>>m;
	int op,x,y,k,a,b,c,d;
	while (cin>>op){
		if (op==1){
			cin>>x>>y>>k;
			add(x,y,k);
		}
		else{
			cin>>a>>b>>c>>d;
			cout<<query(a,b,c,d)<<endl;
		}
	}
}
signed main(){
	CIO;
	work();
	return 0;
}

二维树状数组(区间修改,单点查询)

int a[M][M];
int n,m;
int lowbit(int x){
	return x&(-x);
}
void add(int x,int y,int w){
	while (x<=n){
		int i=y;
		while (i<=m){
			a[x][i]+=w;
			i+=lowbit(i);
		}
		x+=lowbit(x);
	}
}
int sum(int x,int y){
	int ans=0;
	while (x>0){
		int i=y;
		while (i>0){
			ans+=a[x][i];
			i-=lowbit(i);
		}
		x-=lowbit(x);
	}
	return ans;
}
int query(int x1,int y1){
	return sum(x1,y1);
}
void work(){
	cin>>n>>m;
	int op,x,y,k,a,b,c,d;
	while (cin>>op){
		if (op==1){
			cin>>a>>b>>c>>d>>k;
			add(a,b,k);
			add(a,d+1,-k);
			add(c+1,b,-k);
			add(c+1,d+1,k);
		}
		else{
			cin>>x>>y;
			cout<<query(x,y)<<endl;
		}
	}
}
signed main(){
	CIO;
	work();
	return 0;
}

二维树状数组(区间修改,区间查询)

暂无

线段树

int tr[4*N],num[N],laz[4*N];
void build(int p,int l,int r){
    if (l==r){
        tr[p]=num[l];
        return;
    }
    int mid=l+r>>1;
    build(2*p,l,mid);
    build(2*p+1,mid+1,r);
    tr[p]=tr[2*p]+tr[2*p+1];
}
//build(1,1,n);
void pushdown(int p,int l,int r){
    int mid=l+r>>1;
    laz[2*p]+=laz[p];
    laz[2*p+1]+=laz[p];
    tr[2*p]+=laz[p]*(mid-l+1);
    tr[2*p+1]+=laz[p]*(r-mid);
    laz[p]=0;
}
int query(int p,int l,int r,int x,int y){
	if (x<=l&&r<=y){
		return tr[p];
	}
    pushdown(p,l,r);
	int mid=l+r>>1,ans=0;
	if (x<=mid)ans+=query(2*p,l,mid,x,y);
	if (mid<y)ans+=query(2*p+1,mid+1,r,x,y);
	return ans;
}
void update(int p,int l,int r,int x,int y,int w){
    if (x<=l&&r<=y){
        tr[p]+=w*(r-l+1);
        laz[p]+=w;
        return ;
    }
    pushdown(p,l,r);
    int mid=l+r>>1;
    if (x<=mid)update(2*p,l,mid,x,y,w);
    if (mid<y)update(2*p+1,mid+1,r,x,y,w);
    tr[p]=tr[2*p]+tr[2*p+1];
}


 

例题:P3373 【模板】线段树 2

树用结构体装起来,pushdown是关键,这种维护得仔细考虑各个方面。

#include <bits/stdc++.h>
#define int long long
#define CIO std::ios::sync_with_stdio(false)
#define rep(i, l, r) for (int i = l; i <= r; i++)
#define nep(i, r, l) for (int i = r; i >= l; i--)
#define pii pair<int,int>
using namespace std;
const int N=2e5+5;
struct node{
	int sum,mu,add,l,r;
}tr[4*N];
int num[N],laz[4*N];
int n,m,mod;
void build(int p,int l,int r){
	tr[p].l=l;tr[p].r=r;tr[p].mu=1;
    if (l==r){
        tr[p].sum=num[l]%mod;
        return;
    }
    int mid=(l+r)>>1;
    build(2*p,l,mid);
    build(2*p+1,mid+1,r);
    tr[p].sum=(tr[2*p].sum+tr[2*p+1].sum)%mod;
}
void pushdown(int p){
    tr[2*p].sum=(tr[p].mu*tr[2*p].sum%mod+(tr[p].add*(tr[2*p].r-tr[2*p].l+1)%mod)%mod)%mod;
    tr[2*p+1].sum=(tr[p].mu*tr[2*p+1].sum%mod+(tr[p].add*(tr[2*p+1].r-tr[2*p+1].l+1)%mod)%mod)%mod;
    
	tr[2*p].mu=(tr[2*p].mu*tr[p].mu)%mod;
    tr[2*p+1].mu=(tr[2*p+1].mu*tr[p].mu)%mod;
	
	tr[2*p].add=(tr[2*p].add*tr[p].mu+tr[p].add)%mod;
    tr[2*p+1].add=(tr[2*p+1].add*tr[p].mu+tr[p].add)%mod;
    
	tr[p].mu=1;tr[p].add=0;
}
void add(int p,int x,int y,int w){
    if (x<=tr[p].l&&tr[p].r<=y){
        tr[p].add=(tr[p].add+w)%mod;  
        tr[p].sum=(tr[p].sum+w*(tr[p].r-tr[p].l+1))%mod;  
		return;
    }
    pushdown(p);
    tr[p].sum=(tr[2*p].sum+tr[2*p+1].sum)%mod;
    int mid=(tr[p].l+tr[p].r)>>1;
    if (x<=mid)	add(2*p,x,y,w);
    if (mid<y)	add(2*p+1,x,y,w);
    tr[p].sum=(tr[2*p].sum+tr[2*p+1].sum)%mod;
    
}
void mu(int p,int x,int y,int k){
    if (x<=tr[p].l&&tr[p].r<=y){
        tr[p].sum=(tr[p].sum*k)%mod;
        tr[p].add=(tr[p].add*k)%mod;
        tr[p].mu=(tr[p].mu*k)%mod;
        return;
    }
    pushdown(p);
    tr[p].sum=(tr[2*p].sum+tr[2*p+1].sum)%mod;
    int mid=(tr[p].l+tr[p].r)>>1;
    if (x<=mid)	mu(2*p,x,y,k);
    if (mid<y)	mu(2*p+1,x,y,k);
    tr[p].sum=(tr[2*p].sum+tr[2*p+1].sum)%mod;
}
int query(int p,int x,int y){
	if (x<=tr[p].l&&tr[p].r<=y){
		return tr[p].sum;
	}
    pushdown(p);
	int mid=(tr[p].l+tr[p].r)>>1,ans=0;
	if (x<=mid)ans+=query(2*p,x,y)%mod;
	ans=ans%mod;
	if (mid<y)ans+=query(2*p+1,x,y)%mod;
	ans=ans%mod;
	return ans;
}
void work(){
	cin>>n>>m>>mod;
	int op;
	rep(i,1,n)
		cin>>num[i];
	int a,b,w;
	build(1,1,n);
	rep(i,1,m){
		cin>>op;
		if (op==1){
			cin>>a>>b>>w;
			mu(1,a,b,w);
			
		}
		else if (op==2){
			cin>>a>>b>>w;
			add(1,a,b,w);
		}
		else{
			cin>>a>>b;
			cout<<query(1,a,b)<<endl;
		}
	}
}
signed main(){
	CIO;
	work();
	return 0;
}

例题:P1908 逆序对

一道思维题,可以转化成树状数组做

#include <bits/stdc++.h>
#define int long long
#define CIO std::ios::sync_with_stdio(false)
#define rep(i, l, r) for (int i = l; i <= r; i++)
#define nep(i, r, l) for (int i = r; i >= l; i--)
#define pii pair<int,int>
using namespace std;
const int N=5e5+5;
int d[N],rnk[N];
struct shu{
	int idx;
	int val;
}a[N];
int n;
bool cmp(shu p,shu q){
	if (p.val==q.val){
		return p.idx<q.idx;
	}
	return p.val<q.val;
}
int lowbit(int x){
	return x&(-x);
}
void add(int x,int w){
	while (x<=n){
		d[x]+=w;
		x+=lowbit(x);
	}
}
int query(int x){
	int ans=0;
	while (x>0){
		ans+=d[x];
		x-=lowbit(x);
	}
	return ans;
}
void work(){
	cin>>n;
	rep(i,1,n){
		cin>>a[i].val;
		a[i].idx=i;
	}
	sort(a+1,a+n+1,cmp);	
	int sum=0;
	rep(i,1,n){
		rnk[a[i].idx]=i;
	}
	rep(i,1,n){
		add(rnk[i],1);
		sum+=i-query(rnk[i]);
	}
	cout<<sum<<endl;
}
signed main(){
	CIO;
	work();
	return 0;
}

例题:P4513 小白逛公园

利用前缀最大和,后缀最大和,和 来递归求出最大子段和。

主要利用的是pushup

#include <bits/stdc++.h>
#define int long long
#define CIO std::ios::sync_with_stdio(false)
#define rep(i, l, r) for (int i = l; i <= r; i++)
#define nep(i, r, l) for (int i = r; i >= l; i--)
#define pii pair<int,int>
using namespace std;
const int N=5e5+5;
struct tree{
	int l,r,mxl,mxr,sum,ans;
}t[4*N]; 
int n,m;
int a[N];
int pushup(int p){
	t[p].sum=t[2*p].sum+t[2*p+1].sum;
	t[p].mxl=max(t[2*p].mxl,t[2*p].sum+t[2*p+1].mxl);
	t[p].mxr=max(t[2*p+1].mxr,t[2*p+1].sum+t[2*p].mxr);
	t[p].ans=max(max(t[2*p].ans,t[2*p+1].ans),t[2*p].mxr+t[2*p+1].mxl);
}
void build(int p,int l,int r){
	t[p].l=l;t[p].r=r;
	if (l==r){
		t[p].sum=a[l];
		t[p].mxl=t[p].mxr=t[p].ans=a[l];
		return;
	}
	int mid=(l+r)>>1;
	build(2*p,l,mid);
	build(2*p+1,mid+1,r);
	pushup(p);
}
tree query(int p,int x,int y){
	if (x<=t[p].l&&t[p].r<=y){
		return t[p];
	}
	int mid=(t[p].l+t[p].r)>>1;
	if (y<=mid) return query(2*p,x,y);
	else if (x>mid) return query(2*p+1,x,y);
	else{
		tree T,a,b;
		a=query(2*p,x,y);
		b=query(2*p+1,x,y);
		T.mxl=max(a.mxl,a.sum+b.mxl);
		T.mxr=max(b.mxr,b.sum+a.mxr);
		T.ans=max(max(a.ans,b.ans),a.mxr+b.mxl);
		return T;
	}
}
void change(int p,int x,int w){
	if (t[p].l==t[p].r){
		t[p].mxl=t[p].mxr=t[p].ans=t[p].sum=w;
		return;
	}
	int mid=(t[p].l+t[p].r)>>1;
	if (x<=mid) change(2*p,x,w);
	else change(2*p+1,x,w);
	pushup(p);
}
void work(){
	int n,m;
	cin>>n>>m;
	rep(i,1,n){
		cin>>a[i];
	}
	build(1,1,n);
	rep(i,1,m){
		int op,x,y;
		cin>>op;
		if (op==1){
			cin>>x>>y;
			if (y<x) swap(x,y);
			cout<<query(1,x,y).ans<<endl;
		}
		else{
			cin>>x>>y;
			change(1,x,y);
		}
	}
	
}
signed main(){
	CIO;
	work();
	return 0;
}

未完待补 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁水682

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值