MATLAB 基础有限元编程在电磁建模中的应用
1. 数学与数值建模
科学发展的主要动力一直是理解和控制物理现象的渴望。科学不仅满足人类的自然好奇心,还为理解自然规律的机制提供系统的途径。科学方法始于对特定自然现象的观察,并在这些观察中发现某种模式,如周期性重复、对称性等。人类在观察自然现象中的模式时会感到愉悦,并常常对所见所闻提出问题,进而尝试形成想法(假设)并得出关于这些现象的结论或预测。
物理现象的模式可以通过开发数学模型,以数学语言来揭示。数学建模是将现实世界中的科学和工程问题转化为概念世界中易于处理的数学公式的艺术。对这些数学公式进行理论和数值分析,能为更好地理解物理现象提供见解和指导。
数学模型可以分为经验模型和概念(理论)模型:
- 经验模型 :基于对一系列实验数据的数学表达式解释。这种建模方式通常不能提供关于感兴趣现象的普遍接受的理论定律,适用于在复杂的现实问题中难以获得精确数学公式且存在多种不确定性的情况。
- 理论模型 :涉及代数、微分或积分方程,试图模拟物理系统或现象的基本定律,如电磁学中的麦克斯韦方程、电路中的基尔霍夫定律、力学系统中的牛顿定律等。
两种建模方式都试图用数学语言建立物理系统的因果(输入和输出)关系。然而,开发精确的数学模型通常极具挑战性,因为自然现象的系统表示复杂,涉及多个相互作用的组件。因此,在对物理系统进行数学建模时,理想化和简化是不可避免的。数学模型的复杂程度会影响对自然现象建模系统输出的准确性。在许多情况下,简单模型可能提供足够的信息和对问题特征的有价值见解,比复杂模型更受青睐。
建立数学模型后,下
超级会员免费看
订阅专栏 解锁全文
12

被折叠的 条评论
为什么被折叠?



