红黑树常见面试问题整理

参考文献

1.红黑树知识点结构图
2.红黑树漫画初步解读
3.笔试面试常考数据结构红黑树性质总结
4.教你初步了解红黑树(很完整的博客!!)


在这里插入图片描述

一、定义

红黑树是一种特定类型的二叉树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。它是在1972年由RudolfBayer发明的,他称之为"对称二叉B树",它现代的名字是在LeoJ.Guibas和RobertSedgewick于1978年写的一篇论文中获得的。它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的,它可以在O(logn)时间内做查找,插入和删除,这里的n是树中元素的数目。红黑树是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组

二、性质

红黑树是每个节点都带有颜色属性的二叉查找树,颜色或红色或黑色。在二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:
【1】性质1. 节点是红色或黑色。
【2】性质2. 根节点是黑色。
【3】性质3 每个叶节点是黑色的。
【4】性质4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
【5】性质5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

三、用途和好处

红黑树和AVL树一样都对插入时间、删除时间和查找时间提供了最好可能的最坏情况担保。这不只是使它们在时间敏感的应用如即时应用(real time application)中有价值,而且使它们有在提供最坏情况担保的其他数据结构中作为建造板块的价值;例如,在计算几何中使用的很多数据结构都可以基于红黑树。

红黑树在函数式编程中也特别有用,在这里它们是最常用的持久数据结构之一,它们用来构造关联数组和集合,在突变之后它们能保持为以前的版本。除了O(log n)的时间之外,红黑树的持久版本对每次插入或删除需要O(log n)的空间。

红黑树是 2-3-4树的一种等同。换句话说,对于每个 2-3-4 树,都存在至少一个数据元素是同样次序的红黑树。在 2-3-4 树上的插入和删除操作也等同于在红黑树中颜色翻转和旋转。这使得 2-3-4 树成为理解红黑树背后的逻辑的重要工具,这也是很多介绍算法的教科书在红黑树之前介绍 2-3-4 树的原因,尽管 2-3-4 树在实践中不经常使用。


四、红黑树的数据结构

enum Color  
{  
    RED = 0,  
    BLACK = 1  
};  

struct RBTreeNode  
{ 
    struct RBTreeNode*left, *right, *parent;  
    int key;  
    int data;  
    Color color;  
};
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页