朴素贝叶斯中的极大似然估计

本文探讨了极大似然估计与朴素贝叶斯方法在概率建模中的应用。极大似然估计是通过最大化样本数据出现的概率来估计参数,而朴素贝叶斯则依赖于特征条件独立的假设。虽然朴素贝叶斯可以通过频率计算先验和条件概率,但在某些复杂情况下可能不够准确。文章提到,在求解过程中需要注意概率的约束条件,并可能需要使用拉格朗日乘数法确保概率之和为1。文章强调了在特定情境下选择合适方法的重要性。
摘要由CSDN通过智能技术生成

为什么要极大似然估计, 朴素贝叶斯不能搞定一切吗?

朴素贝叶斯需要先求得先验概率和条件概率。 从直觉出发,可以用样本中出现的频率直接代替先验概率和条件概率。 但事实上使用频率计算出来的值,也是极大似然估计的结果。

 

极大似然估计回顾

极大似然估计就是把样本的所有联合概率相乘(离散),或所有联合概率密度相乘(连续), 对参数求偏导=0使其最大,从而解出参数的值。

这里需要求的是条件概率和先验概率,因此需要想办法把这两项放到极大似然函数中作为参数。

 

考虑到联合分布即是这两项的值,直接拆开即可。

 

解法

转自: https://www.zhihu.com/question/33959624

Hazel的解法非常巧妙,值得多读几遍。

下面只计算了条件概率, 先验概率的算法一样,需要根据θ的性质构造拉格朗日乘法项进行计算, 解得Nk/N

 

求解过程中,若没有注意到概率之和等于1这个潜在条件,会出现导数为0无解的情况。 应考虑到此前提,使用拉格朗日乘法项进行计算。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值