朴素贝叶斯(二)|极大似然估计+学习与分类算法+贝叶斯估计| 《统计学习方法》学习笔记(十六)

朴素贝叶斯法的参数估计

1. 极大似然估计

在朴素贝叶斯法中,学习意味着估计 P ( Y = c k ) P(Y=c_k) P(Y=ck) P ( X ( j ) = x ( j ) ∣ Y = c k ) P(X^{(j)}=x^{(j)}|Y=c_k) P(X(j)=x(j)Y=ck)。可以应用极大似然估计法估计相应的概率。先验概率 P ( Y = c k ) P(Y=c_k) P(Y=ck)的极大似然估计是
P ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) N , k = 1 , 2 , . . . , K P(Y=c_k)=\frac{\sum_{i=1}^NI(y_i=c_k)}{N}, \quad k=1,2,...,K P(Y=ck)=Ni=1NI(yi=ck),k=1,2,...,K
设第j个特征 x ( j ) x^{(j)} x(j)可能取值的集合为 { a j 1 , a j 2 , . . . , a j S j } \{a_{j1},a_{j2},...,a_{jS_j}\} {aj1,aj2,...,ajSj},条件概率 P ( X ( j ) = a j l ∣ Y = c k ) P(X^{(j)}=a_{jl}|Y=c_k) P(X(j)=ajlY=ck)的极大似然估计是
P ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) ∑ i = 1 N I ( y l = c k ) j = 1 , 2 , . . . , n ;   l = 1 , 2 , . . , S j ;   k = 1 , 2 , . . . , K P(X^{(j)}=a_{jl}|Y=c_k)=\frac{\sum_{i=1}^NI(x_i^{(j)}=a_{jl},y_i=c_k)}{\sum_{i=1}^NI(y_l=c_k)} \quad j=1,2,...,n;\space l=1,2,..,S_j;\space k=1,2,...,K P(X(j)=ajlY=ck)=i=1NI(yl=ck)i=1NI(xi(j)=ajl,yi=ck)j=1,2,...,n; l=1,2,..,Sj; k=1,2,...,K
式中, x i ( j ) x_i^{(j)} xi(j)是第i个样本的第j个特征, a j l a_jl ajl是第j个特征可能取的第l个值, I I I为指示函数。

2. 学习与分类算法

算法:朴素贝叶斯算法

输入:训练数据 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),...,(xN,yN)},其中 x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( n ) ) T x_i=(x_i^{(1)},x_i^{(2)},...,x_i^{(n)})^T xi=(xi(1),xi(2),...,xi(n))T x i ( j ) x_i^{(j)} xi(j)是第i个样本的j个特征, x i ( j ) ∈ a j 1 , a j 2 , . . . , a j S j x_i^{(j)}\in {a_{j1},a_{j2},...,a_{jS_j}} xi(j)aj1,aj2,...,ajSj a j l a_{jl} ajl是第j个特征可能取的第 l l l个值, j = 1 , 2 , . . . , n , l = 1 , 2 , . . . , S j , y i ∈ { c 1 , c 2 , . . , c K } j=1,2,...,n,\quad l=1,2,...,S_j,\quad y_i\in\{c_1,c_2,..,c_K\} j=1,2,...,n,l=1,2,...,Sj,yi{c1,c2,..,cK};实例x;

输出:实例x的分类

(1)计算先验概率及条件概率
P ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) N , k = 1 , 2 , . . . , K p ( X ( f ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i ( f ) = a j l , y i = c k ) ∑ i = 1 N I ( y i = c k ) j = 1 , 2 , . . . , n ; l = 1 , 2 , . . . , S j = 1 , 2 , . . . , K P(Y=c_k)=\frac{\sum_{i=1}^NI(y_i=c_k)}{N}, \quad k=1,2,...,K \\ p(X^{(f)}=a_{jl}|Y=c_k)=\frac{\sum_{i=1}^NI(x_i^{(f)}=a_{jl},y_i=c_k)}{\sum_{i=1}^NI(y_i=c_k)} \\ j=1,2,...,n; \quad l=1,2,...,\quad S_j=1,2,...,K P(Y=ck)=Ni=1NI(yi=ck),k=1,2,...,Kp(X(f)=ajlY=ck)=i=1NI(yi=ck)i=1NI(xi(f)=ajl,yi=ck)j=1,2,...,n;l=1,2,...,Sj=1,2,...,K
(2)对于给定的实例 x = ( x ( 1 ) , x ( 2 ) , . . . , x ( n ) ) T x=(x^{(1)},x^{(2)},...,x^{(n)})^T x=(x(1),x(2),...,x(n))T,计算
P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) , k = 1 , 2 , . . . , K P(Y=c_k)\prod_{j=1}^nP(X^{(j)}=x^{(j)}|Y=c_k),\quad k=1,2,...,K P(Y=ck)j=1nP(X(j)=x(j)Y=ck)k=1,2,...,K
(3)确定实例x的类
y = a r g   m a x c k P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) y=arg\space max_{c_k}P(Y=c_k)\prod_{j=1}^nP(X^{(j)}=x^{(j)}|Y=c_k) y=arg maxckP(Y=ck)j=1nP(X(j)=x(j)Y=ck)
例:

试由下表的训练数据学习一个朴素贝叶斯分类器并确定 x = ( 2 , S ) T x=(2,S)^T x=(2,S)T的类标记y。表中 X ( 1 ) , X ( 2 ) X^{(1)},X^{(2)} X(1),X(2)为特征,取值的集合分别为 A 1 = { 1 , 2 , 3 } , A 2 = { S , M , L } A_1=\{1,2,3\},A_2=\{S,M,L\} A1={1,2,3},A2={S,M,L},Y为类标记, Y ∈ C = { 1 , − 1 } Y\in C=\{1,-1\} YC={1,1}

根据朴素贝叶斯算法:

P ( Y = 1 ) = 9 15 , P ( Y = − 1 ) = 6 15 P(Y=1)=\frac{9}{15},\quad P(Y=-1)=\frac{6}{15} P(Y=1)=159,P(Y=1)=156

P ( X ( 1 ) = 1 ∣ Y = 1 ) = 2 9 , P ( X ( 1 ) = 2 ∣ Y = 1 ) = 3 9 , P ( X ( 1 ) = 3 ∣ Y = 1 ) = 4 9 P(X^{(1)}=1|Y=1)=\frac{2}{9},P(X^{(1)}=2|Y=1)=\frac{3}{9},P(X^{(1)}=3|Y=1)=\frac{4}{9} P(X(1)=1Y=1)=92,P(X(1)=2Y=1)=93,P(X(1)=3Y=1)=94

P ( X ( 2 ) = S ∣ Y = 1 ) = 1 9 , P ( X ( 2 ) = M ∣ Y = 1 ) = 4 9 , P ( X ( 2 ) = L ∣ Y = 1 ) = 4 9 P(X^{(2)}=S|Y=1)=\frac{1}{9},P(X^{(2)}=M|Y=1)=\frac{4}{9},P(X^{(2)}=L|Y=1)=\frac{4}{9} P(X(2)=SY=1)=91,P(X(2)=MY=1)=94,P(X(2)=LY=1)=94

P ( X ( 1 ) = 1 ∣ Y = − 1 ) = 3 6 , P ( X ( 1 ) = 2 ∣ Y = − 1 ) = 2 6 , P ( X ( 1 ) = 3 ∣ Y = − 1 ) = 1 6 P(X^{(1)}=1|Y=-1)=\frac{3}{6},P(X^{(1)}=2|Y=-1)=\frac{2}{6},P(X^{(1)}=3|Y=-1)=\frac{1}{6} P(X(1)=1Y=1)=63,P(X(1)=2Y=1)=62,P(X(1)=3Y=1)=61

P ( X ( 2 ) = S ∣ Y = − 1 ) = 3 6 , P ( X ( 2 ) = M ∣ Y = − 1 ) = 2 6 , P ( X ( 2 ) = L ∣ Y = − 1 ) = 1 6 P(X^{(2)}=S|Y=-1)=\frac{3}{6},P(X^{(2)}=M|Y=-1)=\frac{2}{6},P(X^{(2)}=L|Y=-1)=\frac{1}{6} P(X(2)=SY=1)=63,P(X(2)=MY=1)=62,P(X(2)=LY=1)=61

对于给定的 x = ( 2 , S ) T x=(2,S)^T x=(2,S)T计算:
P ( Y = 1 ) P ( X ( 1 ) = 2 ∣ Y = 1 ) P ( X ( 2 ) = S ∣ Y = 1 ) = 1 45 P ( Y = − 1 ) P ( X ( 1 ) = 2 ∣ Y = − 1 ) P ( X ( 2 ) = S ∣ Y = − 1 ) = 1 15 P(Y=1)P(X^{(1)}=2|Y=1)P(X^{(2)}=S|Y=1)=\frac{1}{45} \\ P(Y=-1)P(X^{(1)}=2|Y=-1)P(X^{(2)}=S|Y=-1)=\frac{1}{15} P(Y=1)P(X(1)=2Y=1)P(X(2)=SY=1)=451P(Y=1)P(X(1)=2Y=1)P(X(2)=SY=1)=151
因为 P ( Y = − 1 ) P ( X ( 1 ) = 2 ∣ Y = − 1 ) P ( X ( 2 ) = S ∣ Y = − 1 ) P(Y=-1)P(X^{(1)}=2|Y=-1)P(X^{(2)}=S|Y=-1) P(Y=1)P(X(1)=2Y=1)P(X(2)=SY=1)最大,所以 y = − 1 y=-1 y=1.

3. 贝叶斯估计

用极大似然估计可能会出现所要估计的概率值为0的情况。这时会影响到后验概率的计算结果,使分类产生偏差。解决这一问题的方法是采用贝叶斯估计。具体地,条件概率的贝叶斯估计是
P λ ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) + λ ∑ i = 1 N I ( y i = c k ) + S j λ (1) P_{\lambda}(X^{(j)}=a_{jl}|Y=c_k)=\frac{\sum_{i=1}^NI(x_i^{(j)}=a_{jl},y_i=c_k)+\lambda}{\sum_{i=1}^NI(y_i=c_k)+S_j\lambda} \tag{1} Pλ(X(j)=ajlY=ck)=i=1NI(yi=ck)+Sjλi=1NI(xi(j)=ajl,yi=ck)+λ(1)
式中 λ ≥ 0 \lambda \geq 0 λ0。等价于在随机变量各个取值的频数上赋予一个正数 λ > 0 \lambda>0 λ>0。当 λ = 0 \lambda=0 λ=0时就是极大似然估计。常取 λ = 1 \lambda=1 λ=1,这时称为拉普拉斯平滑(Laplace smoothing)。显然,对任何 l = 1 , 2 , . . . , S j , k = 1 , 2 , . . . , K l=1,2,...,S_j, \quad k=1,2,...,K l=1,2,...,Sj,k=1,2,...,K,有
P λ ( X ( j ) = a j l ∣ Y = c k ) > 0 ∑ l = 1 S j P ( X ( j ) = a j l ∣ Y = c k ) = 1 P_\lambda(X^{(j)}=a_{jl}|Y=c_k)>0 \\ \sum_{l=1}^{S_j}P(X^{(j)}=a_{jl}|Y=c_k)=1 Pλ(X(j)=ajlY=ck)>0l=1SjP(X(j)=ajlY=ck)=1
表明式(1)确为一种概率分布。其中 S j S_j Sj是某一特征值的可能取值数量。同样,先验概率的贝叶斯估计是
P λ ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) + λ N + K λ P_{\lambda}(Y=c_k)=\frac{\sum_{i=1}^NI(y_i=c_k)+\lambda}{N+K\lambda} Pλ(Y=ck)=N+Kλi=1NI(yi=ck)+λ
其中K是类标记Y的可能取值数量。

例:

试由下表的训练数据学习一个朴素贝叶斯分类器并确定 x = ( 2 , S ) T x=(2,S)^T x=(2,S)T的类标记y。表中 X ( 1 ) , X ( 2 ) X^{(1)},X^{(2)} X(1),X(2)为特征,取值的集合分别为 A 1 = { 1 , 2 , 3 } , A 2 = { S , M , L } A_1=\{1,2,3\},A_2=\{S,M,L\} A1={1,2,3},A2={S,M,L},Y为类标记, Y ∈ C = { 1 , − 1 } Y\in C=\{1,-1\} YC={1,1},按照拉普拉斯平滑估计概率,即取 λ = 1 \lambda=1 λ=1.

:按照贝叶斯估计

P ( Y = 1 ) = 10 17 , P ( Y = − 1 ) = 7 17 P(Y=1)=\frac{10}{17},P(Y=-1)=\frac{7}{17} P(Y=1)=1710,P(Y=1)=177

P ( X ( 1 ) = 1 ∣ Y = 1 ) = 3 12 , P ( X ( 1 ) = 2 ∣ Y = 1 ) = 4 12 , P ( X ( 1 ) = 3 ∣ Y = 1 ) = 5 12 P(X^{(1)}=1|Y=1)=\frac{3}{12},P(X^{(1)}=2|Y=1)=\frac{4}{12},P(X^{(1)}=3|Y=1)=\frac{5}{12} P(X(1)=1Y=1)=123,P(X(1)=2Y=1)=124,P(X(1)=3Y=1)=125

P ( X ( 2 ) = S ∣ Y = 1 ) = 2 12 , P ( X ( 2 ) = M ∣ Y = 1 ) = 5 12 , P ( X ( 2 ) = L ∣ Y = 1 ) = 5 12 P(X^{(2)}=S|Y=1)=\frac{2}{12},P(X^{(2)}=M|Y=1)=\frac{5}{12},P(X^{(2)}=L|Y=1)=\frac{5}{12} P(X(2)=SY=1)=122,P(X(2)=MY=1)=125,P(X(2)=LY=1)=125

P ( X ( 1 ) = 1 ∣ Y = − 1 ) = 4 9 , P ( X ( 1 ) = 2 ∣ Y = − 1 ) = 3 9 , P ( X ( 1 ) = 3 ∣ Y = − 1 ) = 2 9 P(X^{(1)}=1|Y=-1)=\frac{4}{9},P(X^{(1)}=2|Y=-1)=\frac{3}{9},P(X^{(1)}=3|Y=-1)=\frac{2}{9} P(X(1)=1Y=1)=94,P(X(1)=2Y=1)=93,P(X(1)=3Y=1)=92

P ( X ( 2 ) = S ∣ Y = − 1 ) = 4 9 , P ( X ( 2 ) = M ∣ Y = − 1 ) = 3 9 , P ( X ( 2 ) = L ∣ Y = − 1 ) = 2 9 P(X^{(2)}=S|Y=-1)=\frac{4}{9},P(X^{(2)}=M|Y=-1)=\frac{3}{9},P(X^{(2)}=L|Y=-1)=\frac{2}{9} P(X(2)=SY=1)=94,P(X(2)=MY=1)=93,P(X(2)=LY=1)=92

对于给定的 x = ( 2 , S ) T x=(2,S)^T x=(2,S)T计算:
P ( Y = 1 ) P ( X ( 1 ) = 2 ∣ Y = 1 ) P ( X ( 2 ) = S ∣ Y = 1 ) = 5 153 = 0.0327 P ( Y = − 1 ) P ( X ( 1 ) = 2 ∣ Y = − 1 ) P ( X ( 2 ) = S ∣ Y = − 1 ) = 28 459 = 0.0610 P(Y=1)P(X^{(1)}=2|Y=1)P(X^{(2)}=S|Y=1)=\frac{5}{153}=0.0327 \\ P(Y=-1)P(X^{(1)}=2|Y=-1)P(X^{(2)}=S|Y=-1)=\frac{28}{459}=0.0610 P(Y=1)P(X(1)=2Y=1)P(X(2)=SY=1)=1535=0.0327P(Y=1)P(X(1)=2Y=1)P(X(2)=SY=1)=45928=0.0610
因为 P ( Y = − 1 ) P ( X ( 1 ) = 2 ∣ Y = − 1 ) P ( X ( 2 ) = S ∣ Y = − 1 ) P(Y=-1)P(X^{(1)}=2|Y=-1)P(X^{(2)}=S|Y=-1) P(Y=1)P(X(1)=2Y=1)P(X(2)=SY=1)最大,所以 y = − 1 y=-1 y=1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值