NVIDIA GPU 的使用场景及应用

目录

一、背景

二、使用平台和场景

2.1、高性能计算(HPC):

2.2、 深度学习和人工智能:

2.3、图形渲染和内容创作:

2.4、游戏和实时渲染:

2.5、 数据分析和可视化:

三、常用 API 接口

3.1、CUDA(Compute Unified Device Architecture):

3.2、cuDNN(CUDA Deep Neural Network library):

3.3、TensorRT:

3.4、OptiX:

3.5、NCCL(NVIDIA Collective Communication Library):

四、CUDA C++ 代码使用示例

4.1、示例代码:CUDA 向量加法

4.2、 代码解释


一、背景

        NVIDIA GPU 在各种平台和使用场景中的应用非常广泛。以下是一些主要平台和使用场景,以及常用的 API 接口和 C++ 代码示例。

二、使用平台和场景

2.1、高性能计算(HPC):

  •     平台: 数据中心、超级计算机
  •     场景: 科学计算、气象模拟、分子动力学

2.2、 深度学习和人工智能:

  •     平台: 数据中心、云计算、边缘设备
  •     场景: 训练深度神经网络、推理任务、计算机视觉、自然语言处理

2.3、图形渲染和内容创作:

  •      平台: 工作站、数据中心
  •      场景: 3D 渲染、视频编辑、虚拟现实

2.4、游戏和实时渲染:

  •     平台: 游戏机、PC
  •     场景: 实时图形渲染、物理仿真

2.5、 数据分析和可视化:

  •     平台: 数据中心、工作站
  •     场景: 大数据处理、可视化分析

三、常用 API 接口

3.1、CUDA(Compute Unified Device Architecture)&#x

### 配置NVIDIA GPU用于Ollama #### 确认硬件和软件环境 确保所使用Nvidia GPU具备至少5.0版本的计算能力[^2]。对于希望利用GPU加速来运行Ollama的应用程序而言,首要条件是确认计算机上已经正确安装了最新的GPU驱动以及CUDA工具包[^1]。 #### 安装必要的组件 为了使Docker容器能够访问并充分利用NVIDIA GPU资源,在Linux环境中(如CentOS),可以通过如下命令序列完成NVIDIA容器镜像及相关工具集的部署: ```bash curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo | \ sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo sudo yum-config-manager --enable nvidia-container-toolkit-experimental sudo yum install -y nvidia-container-toolkit ``` 上述脚本会向系统添加官方源地址,并启用实验性质的支持选项,最后一步则是实际下载并安装所需的套件[^3]。 #### 启动带有GPU支持的Ollama服务 一旦完成了前期准备工作之后,便可以在启动Ollama实例的时候通过指定参数让其知晓存在可用的GPU设备。通常情况下这涉及到修改默认的服务启动指令或是配置文件中的相应部分,使其包含对`--gpus all`这样的标志位调用来指示Docker引擎尽可能多地分配给定的任务到图形处理器上去执行。 ```json { "deploy": { "resources": { "reservations": { "devices": [ { "capabilities": [["gpu"]] } ] } } } } ``` 这段JSON片段展示了如何在一个更复杂的场景下定义资源预留策略,特别是当涉及多个容器编排平台时可能需要用到这种方式来精确控制哪些工作负载应该被指派至特定类型的物理硬件之上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大王算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值