pandas基础知识

一,创建series 

import pandas as pd
countries = ['中国', '美国', '澳大利亚']
countries_s = pd.Series(countries)
print(type(countries_s))
print(countries_s)
print(countries_s.values)

二,添加索引名

import pandas as pd
country_dicts = {'CH': '中国',
                'US': '美国',
                'AU': '澳大利亚'}

country_dict_s = pd.Series(country_dicts)
# 给索引命名
country_dict_s.index.name = 'index'
# 给数据命名
country_dict_s.name = 'Country'

print(country_dict_s)
print(country_dict_s.values)
print(country_dict_s.index)

三,pd.DataFrame

import pandas as pd

country1 = pd.Series({'Name': '中国',
                    'Language': 'Chinese',
                    'Area': '9.597M km2',
                     'Happiness Rank': 79})

country2 = pd.Series({'Name': '美国',
                    'Language': 'English (US)',
                    'Area': '9.834M km2',
                     'Happiness Rank': 14})

country3 = pd.Series({'Name': '澳大利亚',
                    'Language': 'English (AU)',
                    'Area': '7.692M km2',
                     'Happiness Rank': 9})

df = pd.DataFrame([country1, country2, country3])
print(df)
print('df.values=',df.values)
print(type(df['Area']))
print('area values=',df['Area'].values)
print(df[['Name','Area']])
print(df[['Name','Area']].values)

#操作原数据,要用copy,否则会改变原数据
rank=df['Happiness Rank'].values.copy()
rank+=2
print(df['Happiness Rank'].values)

四,增加一列:

country_1 = pd.Series({'Name': '中国',
                        'Language': '汉语',
                        'Area': '11111'})
country_2 = pd.Series({'Name': '美国',
                        'Language': '英语',
                        'Area': '222'})
country_3 = pd.Series({'Name': '澳大利亚',
                        'Language': '英语',
                        'Area': '333'})
# print(country_1)

df=pd.DataFrame([country_1,country_2,country_3],index=['CH','US','AU'])
print(df)
#
#增加一列  按列索引
df['location']='地球'
print(df)
df['region']=['亚洲','北美洲','大洋洲']
print(df)

 五,转置,删除

country_1 = pd.Series({'Name': '中国',
                        'Language': '汉语',
                        'Area': '11111'})
country_2 = pd.Series({'Name': '美国',
                        'Language': '英语',
                        'Area': '222'})
country_3 = pd.Series({'Name': '澳大利亚',
                        'Language': '英语',
                        'Area': '333'})
# print(country_1)

df=pd.DataFrame([country_1,country_2,country_3],index=['CH','US','AU'])
print(df)
#转换行和列
print('====================================')
print(df.T)
#删除数据
print('====================================')
print(df.drop(['CH']))
print('====================================')
print(df)
#注意 drop操作不会改变原有数据的

六,读csv,index_col

import pandas as pd

# 使用index_col指定索引列
# 使用usecols指定需要读取的列
reprot_2016_df = pd.read_csv('./2016.csv',
                             index_col='Country',
                             usecols=['Country', 'Happiness Rank', 'Happiness Score', 'Region'])
# 数据预览
print(reprot_2016_df.head())
print(reprot_2016_df.values[:2,:])

reprot_2016_df = pd.read_csv('./2016.csv',
                             usecols=['Country', 'Happiness Rank', 'Happiness Score', 'Region'])
# 数据预览
print('==============================================')
print(reprot_2016_df.head())
print(reprot_2016_df.values[:2,:])

print('==============================================')
print(reprot_2016_df[['Region','Happiness Rank']].values[:2,:])

读取csv的第二种方式

df_xc = pd.read_csv('../submit/submit_LF2551924C021_1007_xc.csv').copy()  # 瑕疵结果
    print('len(df_xc)=',len(df_xc))
    newdict = {}
    for index, row in df_xc.iterrows():
        if index<1:
            name = '_'.join(row.filename.split('_')[2:6])
            print('===================')
            print('row')
            print(row)
            print('====================')
            print('name=',name)
            if name not in newdict.keys():
                newdict[name] = [row.probability]
            else:
                newdict[name].append(row.probability)
        break

七,pd.query

from numpy.random import randn
from pandas import DataFrame
df = pd.DataFrame(randn(5, 2), columns=list('ab'))
print(df)
print(df.query('a > b'))
print(df.query('a > 0.2'))

八,列名重命名

import pandas as pd

reprot_2016_df = pd.read_csv('./2016.csv',
                             usecols=['Country', 'Happiness Rank', 'Happiness Score', 'Region'])
# 数据预览
print('==============================================')
print(reprot_2016_df.head())

reprot_2016_df.rename(columns={'Country': '国家','Region': '地区', 'Happiness Rank': '排名', 'Happiness Score': '幸福指数'},
                     inplace=True)
print('==============================================')
print(reprot_2016_df.head())

九,过滤

import pandas as pd

reprot_2016_df = pd.read_csv('./2016.csv',
                             usecols=['Country', 'Happiness Rank', 'Happiness Score', 'Region'])
# 数据预览
print('==============================================')
print(reprot_2016_df.head())

print('==============================================')
df=reprot_2016_df[reprot_2016_df['Country'] == 'Denmark']
print(df.head())

print('==============================================')
only_western_europe_10 = reprot_2016_df[(reprot_2016_df['Region'] == 'Western Europe') & (reprot_2016_df['Happiness Rank'] > 10)]
print(only_western_europe_10.head())

十,处理Nan值

import pandas as pd

log_df = pd.read_csv('./data/log.csv')
print(log_df.head())
print('===============查看head是否有空值=========================')
#查看head是否有空值
print(log_df.head().isnull())
print('===============取出volume不为空的数据=========================')
# 取出volume不为空的数据
print(log_df[log_df['volume'].notnull()])
#将index改为time和user
log_df.set_index(['time', 'user'], inplace=True)
print(log_df)
#按照index排序
print('===============按照index排序=========================')
log_df.sort_index(inplace=True)
print(log_df)
print('================将nan替换为0========================')
#将nan替换为0
print(log_df.fillna(0))
print('================丢掉nan值========================')
#丢掉nan值
print(log_df.dropna())

十一,处理重复值

import pandas as pd
data = pd.DataFrame({'k1': ['one', 'two'] * 2+ ['two'],
                     'k2': [1, 3, 3, 4, 4]})
print(data)
print('===============判断是否重复=========================')
print(data.duplicated())
print('===============去除重复数据=========================')
print(data.drop_duplicates())
print('===============去除指定列的重复数据=========================')
print(data.drop_duplicates(['k2']))

十二,数据合并

import pandas as pd

staff_df = pd.DataFrame([{'姓名': '张三', '部门': '研发部'},
                        {'姓名': '李四', '部门': '财务部'},
                        {'姓名': '赵六', '部门': '市场部'}])


student_df = pd.DataFrame([{'姓名': '张三', '专业': '计算机'},
                        {'姓名': '李四', '专业': '会计'},
                        {'姓名': '王五', '专业': '市场营销'}])

print(staff_df)
print()
print(student_df)
print('===============数据合并有NAN==================')
print(pd.merge(staff_df, student_df, how='outer', on='姓名'))
print('===============数据合并无NAN==================')
print(pd.merge(staff_df, student_df, how='inner', on='姓名'))

十三,分箱操作

import pandas as pd

# 年龄数据
ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]
# 分箱的边界
bins = [18, 25, 35, 60, 100]
cats = pd.cut(ages, bins)
print(cats)
print('================获取分箱编码================')
print(cats.codes)
print('===========统计箱中元素的个数=============')
print(pd.value_counts(cats))
print('===========带标签的分箱=============')
group_names = ['Youth', 'YoungAdult', 'MiddleAged', 'Senior']
cats = pd.cut(ages, bins, labels=group_names)
print(cats)

十四,画图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(100)
df = pd.DataFrame({'A': np.random.randn(365).cumsum(0),
                  'B': np.random.randn(365).cumsum(0) + 20,
                  'C': np.random.randn(365).cumsum(0) - 20},
                 index=pd.date_range('2017/1/1', periods=365))
print(df.head())
df.plot()
plt.show()

df.plot('A', 'B', kind='scatter')
plt.show()

# 颜色(c)和大小(s)由'B'列的数据决定
ax = df.plot('A', 'B', kind='scatter',
        c='B', s=df['B'], colormap='viridis')
# 设置坐标为相同比例
ax.set_aspect('equal')
plt.show()

df.plot(kind='box')
plt.show()

df.plot(kind='hist', alpha=0.7)
df.plot(kind='kde')
plt.show()

十五,groupby

import pandas as pd
df = pd.DataFrame({'key1' : ['a', 'a', 'b', 'c'],
                   'key2': ['one', 'two', 'one', 'two'],
                   'data1':[1,2,3,4],
                   'data2':[2,3,4,5]})
print(df)
print('====================')
grouped = df['data1'].groupby(df['key1'])
print(grouped.mean())
print('====================')
means = df['data1'].groupby([df['key1'], df['key2']]).mean()
print(means)
print('====================')
print(df.groupby('key1').mean())

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
countries = ['Germany', 'UK', 'CH', 'JP', 'Switzerland']

data = pd.DataFrame({'InvoiceNo':['c12','24','34','3','4','5','6'],
                    'price': [2,1,1,2,3,4,3],'quantity':[3,2,2,1,4,5,4],
                     'country': ['UK','UK','UK', 'UK', 'CH', 'JP', 'CH']})
print(data)
#只要我关心的国家
data=data[data['country'].isin(countries)].copy()
#c开头意味取消交易
cond1 = ~data['InvoiceNo'].str.startswith('c')
cond2=data['country']!='UK'
data2=data[cond1&cond2].copy()
print('===============================================')
print(data2)
data2['total_cost']=data2['price']*data2['quantity']
print(data2)
print('===============================================')
cost_per_country=data2.groupby('country')['total_cost'].sum()
print(cost_per_country)
print('===============================================')
print(cost_per_country.to_frame())
# 可视化结果
sns.barplot(data=cost_per_country.to_frame().T)
# cost_per_country.sort_values(ascending=False).plot(kind='bar')
plt.xticks(rotation=90)
plt.xlabel('Country')
plt.ylabel('costs')
plt.tight_layout()
plt.show()

十六,apply用于每一列最小最大归一化

import pandas as pd
a=pd.Series({'v1':2,
             'v2':3})
b=pd.Series({'v1':5,
             'v2':10})
c=pd.Series({'v1':4,
             'v2':6})
all=pd.DataFrame([a,b,c])
def scale_minmax(col):
    return (col-col.min())/(col.max()-col.min())
print('================')
print(all)
all=all.apply(scale_minmax,axis=0)
print('================')
print(all)

import pandas as pd

Img1 = pd.Series({'ID': '1.jpg',
                   'Detection': '311 707 472 842'})

Img2 = pd.Series({'ID': '2.jpg',
                   'Detection': '311 707 472 842'})

Img3 = pd.Series({'ID': '3.jpg',
                   'Detection': '311 707 472 842'})
df = pd.DataFrame([Img1, Img2, Img3])
print('========================')
print(df)
print(df.iloc[:, 0])

print('=========================')
def pre_data(df):
    df.iloc[:, 0] = df.apply(lambda x: [float(a) for a in x[0].split(' ')], axis=1)
pre_data(df)
print(df)

a='1 2 3 4'
print([float(i) for i in a.split(' ')])

十七,map,可用来制作类别型特征

示例1:

import pandas as pd
x = pd.Series(['A', 'B', 'C'], index=['one', 'two', 'three'])
y = {'A': 1, 'B': 2, 'C': 3}
z=x.map(y)
print(x)
print(z)

示例2 :

#produce res change 0 and 1
    df_yj['res'] = df_yj['probability'].map(lambda x: 0 if x < 0.2 else 1)
    # # 生成结果文件,保存在result文件夹中,可用于直接提交
    df_yj.to_csv(("../submit/LF2551924C021_1007_result_yj_0_1.csv"), index=False)

十八,生成csv一

import pandas as pd
c={}
a=np.array([1])
b=np.array(['1 2 3 4'])
c['ID']=a
c['Detection']=b
a_df=pd.DataFrame(c)
a_df.to_csv('test16.csv',index=False,columns=['ID','Detection'])

生成csv二

import pandas as pd
a=np.array([1,2,3,4])
b=np.array([3,4,5,6])
a_df = pd.DataFrame(np.hstack([a.reshape(-1,1),b.reshape(-1,1)]))
a_df.to_csv('1.csv',index=False,header=['a','b'])

生成csv三

label_warp = {'normal': 0,
              'defect': 1}
img_path=['a','b','c']
label=['normal','defect','normal']
label_file = pd.DataFrame({'img_path': img_path, 'label': label})
print(label_file)
label_file=label_file['label'].map(label_warp)
print(label_file)

生成excel

df = pd.DataFrame(res)
df.to_excel('./yunjiang_test3.xls', index=False, header=None)

十九,给csv空的header增加header,注意在读的时候没有header要将其为None

csv_path = './train_only.csv'
df = pd.read_csv(csv_path,header=None)######注意
print(df.shape)
df_value=df.values
# print(df_value[:-1,1])
# print(len(df_value[:,1]))

df=pd.DataFrame(df_value,columns=['name','xmin','ymin','xmax','ymax','class'])
df.to_csv('train_xml.csv',index=False)

二十,loc,iloc,ix,loc——通过行标签索引行数据,iloc——通过行号索引行数据,ix——通过行标签或者行号索引行数据(基于loc和iloc 的混合)

import pandas as pd

data = [[1, 2, 3], [4, 5, 6]]
index = ['a', 'b']  # 行号
columns = ['c', 'd', 'e']  # 列号
df = pd.DataFrame(data, index=index, columns=columns)  # 生成一个数据框
print(df)
print('===============')
#loc——通过行标签索引行数据
print(df.loc['a'])
#iloc——通过行号索引行数据
print('=================')
print(df.iloc[0])
#ix——通过行标签或者行号索引行数据(基于loc和iloc 的混合)
print('=================')
print(df.ix[0])
print(df.ix['a'])

print('=================')
print(df.loc[:, ['c']])

print(df.iloc[:, [0]])

二十一:value_counts()

可以用来统计每一类的个数

from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
# load data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
print('df.shape=',df.shape)
df['label'] = iris.target
print(df['label'].value_counts())

二十二:pandas读取csv的name

import numpy as np
import pandas as pd
names = np.array(pd.read_csv('./hunhe.csv', header=None))[:, 0]
print(names)

name_df=np.array(pd.read_csv('./hunhe.csv', header=None).values[:,0]).reshape(-1)
print(name_df)

二十三.pd.concat

import pandas as pd
df1 = pd.DataFrame([['a', 1], ['b', 2]],columns = ['letter', 'number'])
print(df1)
df2 = pd.DataFrame([['c', 1], ['d', 2]], columns=['letter', 'number'])
print(df2)
df=pd.concat([df1,df2])
print(df)

二十四.Categorical

import pandas as pd
my_categories = pd.Categorical(['foo', 'bar', 'baz', 'foo', 'bar'])
print('=====================')
print(my_categories)
#查看类别标签
print('======================')
print(my_categories.categories)
# 查看类别编码
print('======================')
print(my_categories.codes)

二十五.利用modin进行pandas加速

pip install modin[ray]

### Read in the data with Pandas
import pandas as pd


s = time.time()
df = pd.read_csv("esea_master_dmg_demos.part1.csv")
e = time.time()
print("Pandas Loading Time = {}".format(e-s))


### Read in the data with Modin
import modin.pandas as pd


s = time.time()
df = pd.read_csv("esea_master_dmg_demos.part1.csv")
e = time.time()
print("Modin Loading Time = {}".format(e-s))

二十六.取出csv的某一列类别值对应的数据

import numpy as np
import pandas as pd


def gini(nums):
    probs = [nums.count(i)/len(nums) for i in set(nums)]
    gini = sum([p*(1-p) for p in probs])
    return gini


def split_dataframe(data, col):
    '''
    function: split pandas dataframe to sub-df based on data and column.
    input: dataframe, column name.
    output: a dict of splited dataframe.
    '''
    # unique value of column
    unique_values = data[col].unique()
    # print('==unique_values:', unique_values)
    # empty dict of dataframe
    result_dict = {elem: pd.DataFrame for elem in unique_values}
    # split dataframe based on column value
    for key in result_dict.keys():
        result_dict[key] = data[:][data[col] == key]
    return result_dict



def test_split_dataframe():
    df = pd.read_csv('./example_data.csv', dtype={'windy': 'str'})
    res = split_dataframe(df, 'temp')
    print('=res:', res.keys())
    print("=====res['mild']:\n", res['mild'])
if __name__ == '__main__':
    test_split_dataframe()

excel数据(注意excel数据排版没对齐): 

humility	outlook	temp	windy	play
high	sunny	hot	FALSE	no
high	sunny	hot	TRUE	no
high	overcast	hot	FALSE	yes
high	rainy	mild	FALSE	yes
normal	rainy	cool	FALSE	yes
normal	rainy	cool	TRUE	no
normal	overcast	cool	TRUE	yes
high	sunny	mild	FALSE	no
normal	sunny	cool	FALSE	yes
normal	rainy	mild	FALSE	yes
normal	sunny	mild	TRUE	yes
high	overcast	mild	TRUE	yes
normal	overcast	hot	FALSE	yes
high	rainy	mild	TRUE	no

输出结果: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值