Deep Alignment Network(人脸对齐)

一,DAN

由于使用了关键点热力图的可视化信息,故可以将整张图输入网络。

网络分为多个阶段(STAGE),每个阶段的结构都是相同的(STAGE 1除外)。第一阶段的输入仅有原始图片,和S0。面部关键点的初始化即为S0,S0是由所有关键点取平均得到。每个STAGE都由前馈网络和connection层组成。前馈网络用来估计特征点的位置,connection层生成下一个STAGE的输入。connection层由Transform Estimation层, Image Transform 层, Landmark Transform 层, Heatmap Generation 层 和 Feature Generation 层组成。结构如下:

transform estimation 层生成变换T_{t+1},t是当前stage的序号。变换(IMAGE TRANSFORM 和 LANDMARK TRANSFORM)用来扭曲输入图像I和当前的特征点S_{t},使得S_{t}和规范形态的S_{0}接近。变换后的特征点T_{t+1}(S_{t})被传入热度图生成层。逆变换T_{t+1}^{-1}用来将前面几个stage生成的特征点映射到原来的坐标系。

从图中发现,DAN要做的“变换”,就是把图片给矫正了,尤其是一行,那么DAN对姿态变换具有很好的适应能力,或许就得益于这个“变换”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值