微信公众号“圆圆的算法笔记”,持续更新NLP、CV、搜推广干货笔记和业内前沿工作解读~
后台回复“交流”加入“圆圆的算法笔记”交流群;回复“时间序列“、”多模态“、”迁移学习“、”NLP“、”图学习“、”表示学习“、”元学习“等获取各个领域干货算法笔记~
今天给大家介绍ICLR 2022最佳论文PICO: CONTRASTIVE LABEL DISAMBIGUATION FOR PARTIAL LABEL LEARNING,这篇文章解决的是Partial Label Learning(PLL)问题,即训练数据中一个图像不是一个确定的label,而是一组可能的label集合,需要预测出每个样本的真实label。
下载地址:https://openreview.net/pdf?id=EhYjZy6e1gJ
1. 什么是Partial label learning (PLL)
有监督学习是最常见的一种机器学习问题,给定一个输入样本,预测该样本的label是什么。Partial Label Learning(PLL)问题也是预测一个样本对应的label,但是和有监督学习问题的差异是,PLL问题的训练数据中,一个输入样本对应多个候选label,真正的label是候选label中的一个。
为什么会有PLL这样的问题呢?因为在现实问题中,label来自于人工标注,而有的样本人工标注比较困难,只标注一个label会造成噪声较大的问题。例如下面的例子中,比较难区分这张狗对应的类别是哈士奇、雪橇犬还是萨摩耶,强行让人工标注成一个确定的label容易在数据中引入噪声。PLL放宽了这种限制,在标注的label