正规方程Normal equation 对于某些机器学习问题,正规方程会给我们更好的方法来求解假设函数中的θ参数的最优值。 👆梯度下降给出了一种通过不断迭代的方式,通过代价函数寻找θ最优值的解法。 👆而正规方程给出了求解θ的解析解法,即不必运行迭代函数,而是直接一次性求解θ的最优值。 解决方法: 👆代价函数求导,并令导数为零,求解出使得导数为零的参数θx。 👇但实际问题中,参数θ是一个n+1维的向量,也就是θ0到θm的函数。 👆解决的方法是对每一个参数θ求偏导,然后把它们全部置零,解出θ0到θn。 例:👇 假设有一个m = 4的训练样本。