机器学习入门~正规方程Normal equation

本文介绍了机器学习中的正规方程,作为求解假设函数参数θ的解析解。正规方程避免了梯度下降的迭代过程,直接求解最优θ。通过构建设计矩阵X和向量y,利用矩阵运算找到最小化代价函数的θ。虽然正规方程在n较大时计算速度慢,但不需要特征缩放。如果遇到矩阵XT * X不可逆的情况,可能涉及特征冗余或过多,可以通过调整特征或使用伪逆解决。最后,文章展示了使用Python的numpy库实现正规方程的步骤。
摘要由CSDN通过智能技术生成

正规方程Normal equation

  • 对于某些机器学习问题,正规方程会给我们更好的方法来求解假设函数中的θ参数的最优值。
    在这里插入图片描述
  • 👆梯度下降给出了一种通过不断迭代的方式,通过代价函数寻找θ最优值的解法。
  • 👆而正规方程给出了求解θ的解析解法,即不必运行迭代函数,而是直接一次性求解θ的最优值。
    解决方法:
    在这里插入图片描述
    👆代价函数求导,并令导数为零,求解出使得导数为零的参数θx
    👇但实际问题中,参数θ是一个n+1维的向量,也就是θ0到θm的函数。
    在这里插入图片描述
    👆解决的方法是对每一个参数θ求偏导,然后把它们全部置零,解出θ0到θn
    例:👇
    假设有一个m = 4的训练样本。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值