3 分钟将免费无限制的 Claude 2.0 接入任意 GPT 套壳应用,太香了!

Claude 是 ChatGPT 的最强竞争对手,由 OpenAI 早期团队成员创建,目标就是打造出能 赶超 ChatGPT 的 AI。最新版的 Claude 2.0,能力已经开始领先** ChatGPT 3.5 版本,甚至被认为已经接近 GPT-4 的水准**!😱

和 ChatGPT 不同,Claude 2.0 完全免费,注册简单方便,同时支持中文交流对话,没有任何使用次数或篇幅的限制,这个绝对是 ChatGPT 的免费加强版啊!它还支持上传包括 Word、PPT、PDF、代码在内的各种文档,并能自动分析处理,最大达 100k tokens,相当于 10 万字!可以说非常适合处理长文档、大段代码了。

file

目前想使用 Claude 2.0 只能使用网页版,且只有*美国或者英国的 IP *才能注册使用,感兴趣的同学可以自己准备魔法工具,不便多说。

如果想将 Claude 2.0 接入自己的应用,还是需要 API 的,可惜 API 是需要排队申请的,毕竟现在都流行等待名单嘛。Claude 的 API 非常难申请,我申请了几个月了,现在连影子都没见到,目测只有极少数人申请到了,大多数人还是只能通过网页来使用。

不过别慌,即便是网页版,也是有办法将其接入第三方应用的,今天我就给大家分享如何在 3 分钟内将 Claude 2.0 网页版接入第三方应用,比如接入任意 GPT 套壳应用

file

将 Claude 2.0 网页版包装成 API

先从简单的开始学起,这里需要用到一个开源项目叫 openai-proxy,它可以直接将 Claude 网页版包装成兼容 OpenAI 请求格式的 API,这样就可以接入各种第三方 GPT 套壳了。

获取 sessionKey

首先需要访问claude.ai 创建账号(暂时只有美国和英国 IP 可访问)。

然后从网页端找到 organization_uuid

file

还需要找到 sessionKey

file

部署 openai-proxy

部署 openai-proxy 需要考虑到魔法因素,如果您想在本地使用 Docker 部署,需要确保您的容器开启了魔法。如果想省心,可以选择直接使用 Sealos 部署,无需操心魔法。

首先进入 Sealos 桌面:https://cloud.sealos.io

然后在 Sealos 桌面环境中打开「应用管理」:

file

点击「新建应用」:

file

在启动参数中,按照以下方式进行设置:

  • 应用名称随便填;
  • 镜像名为:unickcheng/openai-proxy;
  • CPU 推荐 0.2C,内存推荐 256Mi;
  • 容器暴露端口指定为 3000;
  • 开启外网访问。为了安全起见,建议使用自定义域名。
  • 最后点击「部署」即可部署。

file

部署完成后点击「详情」进入应用详情界面。

file

可以看到 openai-proxy 应用的运行情况,包括 CPU 占用、内存占用等。依次点击右边的三个点,再点击「日志」,即可查看容器日志:

file

点击右边的复制按钮,便可复制 API 的外网地址:

file

打开终端,测试一下这个 API,命令格式如下:

$ curl -X GET '<PROXY_URL>/claude/organizations/<organization_uuid>/chat_conversations' \
--header 'Accept: */*' \
--header 'Content-Type: application/json' \
--header 'Cookie: sessionKey=<KEY>'
  • 将 替换为上面复制的 API 外网地址;
  • 将 替换为前文获取的 organization_uuid;
  • 将 替换为前文获取的 sessionKey。

正确响应如下:

file

下面我们使用熟悉的 OpenAI 请求格式来测试对话功能,命令格式如下:

$ curl -X POST '<PROXY_URL>/claude/<organization_uuid>/<conversation_uuid>/v1/chat/completions' \
--header 'Accept: */*' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer <KEY>' \
--data-raw '{
    "model":"gpt-3.5-turbo",
    "messages": [
        {"role": "user", "content":"你好"}
    ],
    "stream": false
}'
  • 将 替换为上面复制的 API 外网地址;

  • 将 替换为前文获取的 organization_uuid;

  • 将 替换为前文获取的 sessionKey;

  • 将 替换为其中一个会话 ID👇

file

正确响应如下:

file

将 Claude 2.0 接入 GPT 套壳

将这个 API 接入第三方 GPT 套壳应用非常简单,以 ChatGPT Next Web 项目为例,直接打开以下链接一键部署,1 分钟都用不了:

https://cloud.sealos.io/?openapp=system-fastdeploy%3FtemplateName%3Dchatgpt-next-web

默认情况下只需要填写两个参数即可。

file

  • OPENAI_API_KEY 的值为前文获取的 sessionKey。
  • BASE_URL 的值为 /claude/ / 。

然后直接点击「部署应用」,部署成功后跳转到应用详情页即可查看部署情况。

点击外网地址即可通过外网域名直接打开 Web 界面。

file

默认是 gpt-3.5-turbo 模型,我们可以添加自定义模型 claude-2,然后就可以在「模型」里选择 claude-2 模型了。

file

最后来测试一下:

file

完美!

组建 Claude 2.0 账号池

虽然 Claude 2.0 一开始是没有任何限制的,但现在也开始限制了,具体额度是多少我还不确定,大家可以自己测试一下。为了突破限制,我们可以使用多个账号来组成账号池,具体可以参考这个项目:https://github.com/songquanpeng/one-api

言尽于此,大家自己探索吧😄

遗留问题

openai-proxy 项目有一个比较尴尬的问题,一个账号只能使用一个 Conversation,无法自动创建新的 Conversation。如果你有能力,可以给该项目贡献 PR,添加自动创建 Conversation 的功能。

下一篇文章将会教大家如何使用 Laf 云函数来实现自动创建 Conversation 的功能,先预告一下,直接使用这个函数模板就可以了:https://laf.dev/market/templates/64bd2e096c294a2f97285f7f。

有能力的同学可以先去研究一下这个函数模板,或者等我的下一篇文章👀

**申明

郑重申明:请大家在法律法规合法范围内文明使用 AI 大模型,如出现违规行为,自行承担后果,与 Sealos 无关!**

引用链接 [1] openai-proxy: https://github.com/UNICKCHENG/openai-proxy

[2] claude.ai: https://claude.ai/

[3] ChatGPT Next Web: https://github.com/Yidadaa/ChatGPT-Next-Web

关于 Sealos Sealos 是一款以 Kubernetes 为内核的云操作系统发行版。它以云原生的方式,抛弃了传统的云计算架构,转向以 Kubernetes 为云内核的新架构,使企业能够像使用个人电脑一样简单地使用云。

🌟GitHub:https://github.com/labring/sealos

🏠官网:https://sealos.io

💻开发者论坛:https://forum.laf.run sealos 以kubernetes为内核的云操作系统发行版,让云原生简单普及

laf 写代码像写博客一样简单,什么docker kubernetes统统不关心,我只关心写业务!

<think>好的,用户想了解或实现Claude的相关技术,特别是Claude API的封装方法和集成方案。首先,我需要明确用户的需求是什么。他们可能想要开发一个基于Claude应用,比如聊天机器人或者集成到现有系统中。接下来,我需要回顾Claude API的基本使用方法,因为这是封装和集成的基础。 根据引用[1],Claude的API使用手册中提到可以通过示例脚本快速上手,所以应该先介绍API的基本调用方式,比如HTTP请求的结构、认证方法(API密钥)、请求参数和响应处理。这部分需要详细说明,因为这是后续封装的基础。 然后,用户可能需要更高级的封装方法,比如使用Python的类来封装API,这样可以在项目中更方便地调用。这里需要考虑如何设计类结构,比如一个ClaudeClient类,包含初始化方法(设置API密钥、模型版本等)和生成回复的方法。代码示例需要简洁明了,展示如何发送请求和处理响应,同时处理可能的异常,比如网络错误或API限制。 接下来是集成方案部分。用户可能想将Claude集成到不同的平台,比如Web应用、移动应用或桌面应用。对于Web应用,可以使用Flask或FastAPI创建后端API,处理前端请求并转发给Claude。这里需要提供一个简单的Flask示例,展示路由设置和请求处理。同时,可能需要考虑异步处理,避免阻塞主线程,提高性能。 对于桌面应用,使用Tkinter或PyQt这样的GUI框架,结合Claude API,可以实现本地应用。这里需要展示如何将API调用嵌入到GUI的事件处理中,比如按钮点击触发生成回复。此外,移动端集成可能需要使用Kivy或React Native,但具体实现可能需要更详细的说明,或者推荐跨平台框架。 另外,用户可能关心性能优化和安全性。比如,如何处理API请求失败(引用[3]提到相关问题),需要加入重试机制和错误处理。同时,缓存频繁的请求结果可以减少API调用次数,提升响应速度。安全性方面,加密API密钥和使用HTTPS是必要的措施。 还要考虑是否需要多模态支持,引用[4]提到多模态开发支持,比如生成前端代码或游戏脚本。如果用户的需求涉及这些方面,可能需要扩展Claude的功能,处理文件上传或复杂数据格式。但根据用户当前的问题,可能暂时不需要深入这部分,但可以作为高级功能提及。 最后,生成相关问题,帮助用户深入探索。比如API的认证机制、处理流式响应、性能优化方法以及结合其他工具如LangChain的方案。这些问题需要覆盖用户可能遇到的后续步骤,确保他们能够进一步学习和解决问题。 总结来说,回答需要结构清晰,从基础API调用到封装方法,再到不同平台的集成方案,逐步深入。同时,提供代码示例和注意事项,确保用户能够实际应用。引用相关的资料,如API手册和数据处理方法(引用[2]),增强回答的可信度。整个思考过程中,要确保语言简洁,技术细节准确,覆盖用户可能的实际应用场景。</think>### CLAUDE API封装方法 1. **基础API调用** 通过HTTP请求直接调用Claude API,需要配置认证信息: ```python import requests def claude_api_call(prompt, api_key): headers = { "x-api-key": api_key, "Content-Type": "application/json" } data = { "model": "claude-3-opus-20240229", "messages": [{"role": "user", "content": prompt}] } response = requests.post( "https://api.anthropic.com/v1/messages", headers=headers, json=data ) return response.json() ``` 该方法直接使用HTTP请求库实现基础调用[^1][^3] 2. **高级封装(Python类)** ```python class ClaudeClient: def __init__(self, api_key, model="claude-3-sonnet-20240229"): self.base_url = "https://api.anthropic.com/v1/messages" self.headers = { "x-api-key": api_key, "Content-Type": "application/json" } self.model = model def generate_response(self, prompt, max_tokens=1000): data = { "model": self.model, "messages": [{"role": "user", "content": prompt}], "max_tokens": max_tokens } try: response = requests.post( self.base_url, headers=self.headers, json=data ) return response.json()[&#39;content&#39;][0][&#39;text&#39;] except Exception as e: print(f"API调用失败: {str(e)}") return None ``` ### CLAUDE集成方案 1. **Web应用集成(Flask示例)** ```python from flask import Flask, request, jsonify app = Flask(__name__) claude = ClaudeClient(API_KEY) @app.route(&#39;/chat&#39;, methods=[&#39;POST&#39;]) def chat_endpoint(): user_input = request.json.get(&#39;message&#39;) response = claude.generate_response(user_input) return jsonify({"response": response}) ``` 2. **桌面应用集成(Tkinter示例)** ```python import tkinter as tk class ChatApp: def __init__(self): self.claude = ClaudeClient(API_KEY) self.window = tk.Tk() self.text_area = tk.Text(self.window) self.entry = tk.Entry(self.window) self.entry.bind("<Return>", self.send_message) def send_message(self, event): user_input = self.entry.get() response = self.claude.generate_response(user_input) self.text_area.insert(tk.END, f"\nAI: {response}") ``` ### 关键技术要点 1. **认证机制**:使用`x-api-key`头进行身份验证[^1] 2. **模型选择**:支持`claude-3-opus`/`sonnet`/`haiku`等不同版本模型[^2] 3. **流式响应**:通过设置`stream=True`实现实时响应处理 4. **文件处理**:支持上传PDF/图像等多模态输入(需使用特定MIME类型) ### 性能优化建议 1. 请求缓存:对重复请求内容建立本地缓存 2. 异步处理:使用aiohttp实现异步API调用 3. 错误重试:实现指数退避重试机制(建议最大3次)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值