使用bode命令绘制伯德图
首先对电力电子变换器进行建模,求出其控制环路的开环传递函数。然后在命令窗口(或者m文件)中使用tf命令构造传递函数,再使用bode命令绘制传递函数的伯德图即可。比如这里要绘制LCL逆变器电流环的伯德图。首先手动推得LCL逆变器(模块)电流环的开环传递函数为下式。
然后就在MATLAB中用下面的命令构造传递函数并绘制伯德图。
采用本方法绘制出的伯德图如下图所示。
LCL逆变器开环伯德图
采用本方法的好处在于可以方便地使用bodeoptions等命令控制伯德图的显示范围、横纵坐标刻度等等。还可以使用MATLAB自带的工具读出幅值裕度GM、相位裕度(PM)等。在保证传递函数准确的情况下,使用本方法绘制伯德图是最快,也是最准确的方法。
simulink模型线性化的方法得到伯德图
假如simulink仿真模型中所有的元件都是从simulink库中拖出来的,那么simulink实际上是知道所有元件的传递函数的,那么对于多个元件拼凑成的系统,理论上simulink也是知道其传递函数(或者微分方程)的。
首先搭建仿真模型如下图所示(也是一个模块电流控制的LCL逆变器)。
LCL逆变器仿真模型
手动在电流环的给定端和反馈端放一个“In”、一个“Out”模块。然后再打开“Model Linearizer”工具箱(MATLAB 2019b在“APPS”页面中),在Linear Analysis Tool页面选择扰动注入的位置和输出测量的位置,见下图中的描述。
模型线性化步骤
再点击右上角的bode即可得到伯德图。下面是该方法得到的伯德图和手动使用bode命令得到的伯德图的对比,可以看出simulink线性化绘制出的(闭环)伯德图和bode命令绘制出的伯德图十分相近。它们只是陷波频率fr2上有一点偏移,特征频率点偏移是Tustin变换的显著特征。
LCL逆变器闭环伯德图
假如是用电路元件搭起来的仿真模型,实测采用模型线性化方法可能得不到伯德图或者得到的伯德图不准确。这个可能跟实际的电路模型太复杂有关系(模拟信号与数字信号混合,存在大量非线性元器件等)。个人建议还是搭建纯传递函数构成的仿真模型,然后再使用simulink模型线性化方法获取伯德图。
simulink扫频法
这是一种通过实测的方法得到伯德图。具体做法为在Linear Analysis Tool的Estimate页面,设置好小信号的注入频率和注入位置,simulink自动跑一组仿真,得到不同频率点下的响应。下图中的伯德图就是前面LCL逆变器的电流环闭环伯德图,可以看到和前面理论方法得到的闭环伯德图基本形状相近。
扫频法得到的LCL逆变器闭环伯德图
和模型线性化方法类似,扫频法也只适合用纯传递函数搭起来的仿真模型,用电路搭出来的电力电子变换器,使用扫频法测出来的精确度不高(至少LCL逆变器不高)。
总结
最准确的画伯德图的方式还是使用bode命令,但是需要先确定推导的传递函数是否准确。因此,可以先用推导的传递函数绘制一个伯德图,然后再用模型线性化方法或者扫频法实测得到一个伯德图,对比两个伯德图即可知道推导的传递函数是否准确。