numpy笔记

仅为个人笔记

统计频率:
np.array(np.unique(a, return_counts=True)).T
获取指定轴下最值的索引
numpy.argmax(a, axis=None, out=None): Returns the indices of the maximum values along an axis.
numpy.argmin(a, axis=None, out=None)
函数矢量化
numpy.frompyfunc(func, nin, nout)
numpy.vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False, signature=None)
形状相同数据类型不同张量无损合并
numpy.core.records.fromarrays(arrayList, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None)[source]

json包裹numpy对象
python对象 = { ‘placeholder’ : ‘placeholder’ , ‘data’ : numpy对象.tolist()}
json对象 = json.dumps(python对象)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值