集合划分问题:排列组合中的回溯思想(修订版)

后台回复打卡参与刷题挑战

点击卡片可搜索关键词👇

读完本文,可以去力扣解决如下题目:

698. 划分为k个相等的子集(Medium

1b6dd42314f67b5c5e1cc336838c65c9.png

PS:本文是前文 回溯算法牛逼! 的修订版,首先添加了两种回溯思想的来源,即排列公式的两种推导思路;另外,有读者反映力扣添加了测试用例,以前的解法代码现在会超时,所以我进一步优化了代码实现,使之能够通过力扣的测试用例。

以下是正文。

我经常说回溯算法是笔试中最好用的算法,只要你没什么思路,就用回溯算法暴力求解,即便不能通过所有测试用例,多少能过一点。

回溯算法的技巧也不难,前文 回溯算法框架套路 说过,回溯算法就是穷举一棵决策树的过程,只要在递归之前「做选择」,在递归之后「撤销选择」就行了。

但是,就算暴力穷举,不同的思路也有优劣之分

本文就来看一道非常经典的回溯算法问题:子集划分问题。这道题可以帮你更深刻理解回溯算法的思维,得心应手地写出回溯函数。

题目非常简单:

给你输入一个数组 nums 和一个正整数 k,请你判断 nums 是否能够被平分为元素和相同的 k 个子集。

函数签名如下:

boolean canPartitionKSubsets(int[] nums, int k);

我们之前 背包问题之子集划分 写过一次子集划分问题,不过那道题只需要我们把集合划分成两个相等的集合,可以转化成背包问题用动态规划技巧解决。

但是如果划分成多个相等的集合,解法一般只能通过暴力穷举,时间复杂度爆表,是练习回溯算法和递归思维的好机会。

一、思路分析

首先,我们回顾一下以前学过的排列组合知识:

1、P(n, k)(也有很多书写成 A(n, k))表示从 n 个不同元素中拿出 k 个元素的排列(Permutation/Arrangement)总数;C(n, k) 表示从 n 个不同元素中拿出 k 个元素的组合(Combination)总数。

2、「排列」和「组合」的主要区别在于是否考虑顺序的差异。

3、排列、组合总数的计算公式:

06d07b739cab3c4a693c4745b0d85deb.png

好,现在我问一个问题,这个排列公式 P(n, k) 是如何推导出来的?为了搞清楚这个问题,我需要讲一点组合数学的知识。

排列组合问题的各种变体都可以抽象成「球盒模型」,P(n, k) 就可以抽象成下面这个场景:

ee6f1991b84fee4659c9407f7cd91928.png

即,将 n 个标记了不同序号的球(标号为了体现顺序的差异),放入 k 个标记了不同序号的盒子中(其中 n >= k,每个盒子最终都装有恰好一个球),共有 P(n, k) 种不同的方法。

现在你来,往盒子里放球,你怎么放?其实有两种视角。

首先,你可以站在盒子的视角,每个盒子必然要选择一个球。

这样,第一个盒子可以选择 n 个球中的任意一个,然后你需要让剩下 k - 1 个盒子在 n - 1 个球中选择:

0aa86143276216dbbbfc881b24d6964a.png

另外,你也可以站在球的视角,因为并不是每个球都会被装进盒子,所以球的视角分两种情况:

1、第一个球可以不装进任何一个盒子,这样的话你就需要将剩下 n - 1 个球放入 k 个盒子。

2、第一个球可以装进 k 个盒子中的任意一个,这样的话你就需要将剩下 n - 1 个球放入 k - 1 个盒子。

结合上述两种情况,可以得到:

ea3a4f5a8d5f6bfe3bde034afcd45633.png

你看,两种视角得到两个不同的递归式,但这两个递归式解开的结果都是我们熟知的阶乘形式:

7ca8d3db450557fe9a63b26633fc8c2d.png

至于如何解递归式,涉及数学的内容比较多,这里就不做深入探讨了,有兴趣的读者可以自行学习组合数学相关知识。

回到正题,这道算法题让我们求子集划分,子集问题和排列组合问题有所区别,但我们可以借鉴「球盒模型」的抽象,用两种不同的视角来解决这道子集划分问题。

把装有 n 个数字的数组 nums 分成 k 个和相同的集合,你可以想象将 n 个数字分配到 k 个「桶」里,最后这 k 个「桶」里的数字之和要相同。

前文 回溯算法框架套路 说过,回溯算法的关键在哪里?

关键是要知道怎么「做选择」,这样才能利用递归函数进行穷举。

那么模仿排列公式的推导思路,将 n 个数字分配到 k 个桶里,我们也可以有两种视角:

视角一,如果我们切换到这 n 个数字的视角,每个数字都要选择进入到 k 个桶中的某一个

424e148d72ba7b59b66df1396bd6e18d.png

视角二,如果我们切换到这 k 个桶的视角,对于每个桶,都要遍历 nums 中的 n 个数字,然后选择是否将当前遍历到的数字装进自己这个桶里

13c609c89b7e35583c5432a744aa0078.png

你可能问,这两种视角有什么不同?

用不同的视角进行穷举,虽然结果相同,但是解法代码的逻辑完全不同,进而算法的效率也会不同;对比不同的穷举视角,可以帮你更深刻地理解回溯算法,我们慢慢道来

二、以数字的视角

用 for 循环迭代遍历 nums 数组大家肯定都会:

for (int index = 0; index < nums.length; index++) {
    System.out.println(nums[index]);
}

递归遍历数组你会不会?其实也很简单:

void traverse(int[] nums, int index) {
    if (index == nums.length) {
        return;
    }
    System.out.println(nums[index]);
    traverse(nums, index + 1);
}

只要调用 traverse(nums, 0),和 for 循环的效果是完全一样的。

那么回到这道题,以数字的视角,选择 k 个桶,用 for 循环写出来是下面这样:

// k 个桶(集合),记录每个桶装的数字之和
int[] bucket = new int[k];

// 穷举 nums 中的每个数字
for (int index = 0; index < nums.length; index++) {
    // 穷举每个桶
    for (int i = 0; i < k; i++) {
        // nums[index] 选择是否要进入第 i 个桶
        // ...
    }
}

如果改成递归的形式,就是下面这段代码逻辑:

// k 个桶(集合),记录每个桶装的数字之和
int[] bucket = new int[k];

// 穷举 nums 中的每个数字
void backtrack(int[] nums, int index) {
    // base case
    if (index == nums.length) {
        return;
    }
    // 穷举每个桶
    for (int i = 0; i < bucket.length; i++) {
        // 选择装进第 i 个桶
        bucket[i] += nums[index];
        // 递归穷举下一个数字的选择
        backtrack(nums, index + 1);
        // 撤销选择
        bucket[i] -= nums[index];
    }
}

虽然上述代码仅仅是穷举逻辑,还不能解决我们的问题,但是只要略加完善即可:

// 主函数
boolean canPartitionKSubsets(int[] nums, int k) {
    // 排除一些基本情况
    if (k > nums.length) return false;
    int sum = 0;
    for (int v : nums) sum += v;
    if (sum % k != 0) return false;

    // k 个桶(集合),记录每个桶装的数字之和
    int[] bucket = new int[k];
    // 理论上每个桶(集合)中数字的和
    int target = sum / k;
    // 穷举,看看 nums 是否能划分成 k 个和为 target 的子集
    return backtrack(nums, 0, bucket, target);
}

// 递归穷举 nums 中的每个数字
boolean backtrack(
    int[] nums, int index, int[] bucket, int target) {

    if (index == nums.length) {
        // 检查所有桶的数字之和是否都是 target
        for (int i = 0; i < bucket.length; i++) {
            if (bucket[i] != target) {
                return false;
            }
        }
        // nums 成功平分成 k 个子集
        return true;
    }

    // 穷举 nums[index] 可能装入的桶
    for (int i = 0; i < bucket.length; i++) {
        // 剪枝,桶装装满了
        if (bucket[i] + nums[index] > target) {
            continue;
        }
        // 将 nums[index] 装入 bucket[i]
        bucket[i] += nums[index];
        // 递归穷举下一个数字的选择
        if (backtrack(nums, index + 1, bucket, target)) {
            return true;
        }
        // 撤销选择
        bucket[i] -= nums[index];
    }

    // nums[index] 装入哪个桶都不行
    return false;
}

有之前的铺垫,相信这段代码是比较容易理解的。这个解法虽然能够通过,但是耗时比较多,其实我们可以再做一个优化。

主要看 backtrack 函数的递归部分:

for (int i = 0; i < bucket.length; i++) {
    // 剪枝
    if (bucket[i] + nums[index] > target) {
        continue;
    }

    if (backtrack(nums, index + 1, bucket, target)) {
        return true;
    }
}

如果我们让尽可能多的情况命中剪枝的那个 if 分支,就可以减少递归调用的次数,一定程度上减少时间复杂度

如何尽可能多的命中这个 if 分支呢?要知道我们的 index 参数是从 0 开始递增的,也就是递归地从 0 开始遍历 nums 数组。

如果我们提前对 nums 数组排序,把大的数字排在前面,那么大的数字会先被分配到 bucket 中,对于之后的数字,bucket[i] + nums[index] 会更大,更容易触发剪枝的 if 条件。

所以可以在之前的代码中再添加一些代码:

boolean canPartitionKSubsets(int[] nums, int k) {
    // 其他代码不变
    // ...
    /* 降序排序 nums 数组 */
    Arrays.sort(nums);
    for (i = 0, j = nums.length - 1; i < j; i++, j--) {
        // 交换 nums[i] 和 nums[j]
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }
    /*******************/
    return backtrack(nums, 0, bucket, target);
}

由于 Java 的语言特性,这段代码通过先升序排序再反转,达到降序排列的目的。

三、以桶的视角

文章开头说了,以桶的视角进行穷举,每个桶需要遍历 nums 中的所有数字,决定是否把当前数字装进桶中;当装满一个桶之后,还要装下一个桶,直到所有桶都装满为止

这个思路可以用下面这段代码表示出来:

// 装满所有桶为止
while (k > 0) {
    // 记录当前桶中的数字之和
    int bucket = 0;
    for (int i = 0; i < nums.length; i++) {
        // 决定是否将 nums[i] 放入当前桶中
        bucket += nums[i] or 0;
        if (bucket == target) {
            // 装满了一个桶,装下一个桶
            k--;
            break;
        }
    }
}

那么我们也可以把这个 while 循环改写成递归函数,不过比刚才略微复杂一些,首先写一个 backtrack 递归函数出来:

boolean backtrack(int k, int bucket, 
    int[] nums, int start, boolean[] used, int target);

不要被这么多参数吓到,我会一个个解释这些参数。如果你能够透彻理解本文,也能得心应手地写出这样的回溯函数

这个 backtrack 函数的参数可以这样解释:

现在 k 号桶正在思考是否应该把 nums[start] 这个元素装进来;目前 k 号桶里面已经装的数字之和为 bucketused 标志某一个元素是否已经被装到桶中;target 是每个桶需要达成的目标和。

根据这个函数定义,可以这样调用 backtrack 函数:

boolean canPartitionKSubsets(int[] nums, int k) {
    // 排除一些基本情况
    if (k > nums.length) return false;
    int sum = 0;
    for (int v : nums) sum += v;
    if (sum % k != 0) return false;

    boolean[] used = new boolean[nums.length];
    int target = sum / k;
    // k 号桶初始什么都没装,从 nums[0] 开始做选择
    return backtrack(k, 0, nums, 0, used, target);
}

实现 backtrack 函数的逻辑之前,再重复一遍,从桶的视角:

1、需要遍历 nums 中所有数字,决定哪些数字需要装到当前桶中。

2、如果当前桶装满了(桶内数字和达到 target),则让下一个桶开始执行第 1 步。

下面的代码就实现了这个逻辑:

boolean backtrack(int k, int bucket, 
    int[] nums, int start, boolean[] used, int target) {
    // base case
    if (k == 0) {
        // 所有桶都被装满了,而且 nums 一定全部用完了
        // 因为 target == sum / k
        return true;
    }
    if (bucket == target) {
        // 装满了当前桶,递归穷举下一个桶的选择
        // 让下一个桶从 nums[0] 开始选数字
        return backtrack(k - 1, 0 ,nums, 0, used, target);
    }

    // 从 start 开始向后探查有效的 nums[i] 装入当前桶
    for (int i = start; i < nums.length; i++) {
        // 剪枝
        if (used[i]) {
            // nums[i] 已经被装入别的桶中
            continue;
        }
        if (nums[i] + bucket > target) {
            // 当前桶装不下 nums[i]
            continue;
        }
        // 做选择,将 nums[i] 装入当前桶中
        used[i] = true;
        bucket += nums[i];
        // 递归穷举下一个数字是否装入当前桶
        if (backtrack(k, bucket, nums, i + 1, used, target)) {
            return true;
        }
        // 撤销选择
        used[i] = false;
        bucket -= nums[i];
    }
    // 穷举了所有数字,都无法装满当前桶
    return false;
}

这段代码是可以得出正确答案的,但是效率很低,我们可以思考一下是否还有优化的空间

首先,在这个解法中每个桶都可以认为是没有差异的,但是我们的回溯算法却会对它们区别对待,这里就会出现重复计算的情况。

什么意思呢?我们的回溯算法,说到底就是穷举所有可能的组合,然后看是否能找出和为 targetk 个桶(子集)。

那么,比如下面这种情况,target = 5,算法会在第一个桶里面装 1, 4

ed90494a14d175c684abf7ea6f483c05.png

现在第一个桶装满了,就开始装第二个桶,算法会装入 2, 3

469d0c75e0f1f462d9c34a7cb64f4ef7.png

然后以此类推,对后面的元素进行穷举,凑出若干个和为 5 的桶(子集)。

但问题是,如果最后发现无法凑出和为 targetk 个子集,算法会怎么做?

回溯算法会回溯到第一个桶,重新开始穷举,现在它知道第一个桶里装 1, 4 是不可行的,它会尝试把 2, 3 装到第一个桶里:

239d50268100fce3d7e2741a743f447b.png

现在第一个桶装满了,就开始装第二个桶,算法会装入 1, 4

3fee35ece267c5fc0dd03c6f54f5a195.png

好,到这里你应该看出来问题了,这种情况其实和之前的那种情况是一样的。也就是说,到这里你其实已经知道不需要再穷举了,必然凑不出来和为 targetk 个子集。

但我们的算法还是会傻乎乎地继续穷举,因为在她看来,第一个桶和第二个桶里面装的元素不一样,那这就是两种不一样的情况呀。

那么我们怎么让算法的智商提高,识别出这种情况,避免冗余计算呢?

你注意这两种情况的 used 数组肯定长得一样,所以 used 数组可以认为是回溯过程中的「状态」。

所以,我们可以用一个 memo 备忘录,在装满一个桶时记录当前 used 的状态,如果当前 used 的状态是曾经出现过的,那就不用再继续穷举,从而起到剪枝避免冗余计算的作用

有读者肯定会问,used 是一个布尔数组,怎么作为键进行存储呢?这其实是小问题,比如我们可以把数组转化成字符串,这样就可以作为哈希表的键进行存储了。

看下代码实现,只要稍微改一下 backtrack 函数即可:

// 备忘录,存储 used 数组的状态
HashMap<String, Boolean> memo = new HashMap<>();

boolean backtrack(int k, int bucket, int[] nums, int start, boolean[] used, int target) {        
    // base case
    if (k == 0) {
        return true;
    }
    // 将 used 的状态转化成形如 [true, false, ...] 的字符串
    // 便于存入 HashMap
    String state = Arrays.toString(used);

    if (bucket == target) {
        // 装满了当前桶,递归穷举下一个桶的选择
        boolean res = backtrack(k - 1, 0, nums, 0, used, target);
        // 将当前状态和结果存入备忘录
        memo.put(state, res);
        return res;
    }

    if (memo.containsKey(state)) {
        // 如果当前状态曾今计算过,就直接返回,不要再递归穷举了
        return memo.get(state);
    }

    // 其他逻辑不变...
}

这样提交解法,发现执行效率依然比较低,这次不是因为算法逻辑上的冗余计算,而是代码实现上的问题。

因为每次递归都要把 used 数组转化成字符串,这对于编程语言来说也是一个不小的消耗,所以我们还可以进一步优化

注意题目给的数据规模 nums.length <= 16,也就是说 used 数组最多也不会超过 16,那么我们完全可以用「位图」的技巧,用一个 int 类型的 used 变量来替代 used 数组。

具体来说,我们可以用整数 used 的第 i 位((used >> i) & 1)的 1/0 来表示 used[i] 的 true/false。

这样一来,不仅节约了空间,而且整数 used 也可以直接作为键存入 HashMap,省去数组转字符串的消耗。

看下最终的解法代码:

public boolean canPartitionKSubsets(int[] nums, int k) {
    // 排除一些基本情况
    if (k > nums.length) return false;
    int sum = 0;
    for (int v : nums) sum += v;
    if (sum % k != 0) return false;

    int used = 0; // 使用位图技巧
    int target = sum / k;
    // k 号桶初始什么都没装,从 nums[0] 开始做选择
    return backtrack(k, 0, nums, 0, used, target);
}

HashMap<Integer, Boolean> memo = new HashMap<>();

boolean backtrack(int k, int bucket,
                  int[] nums, int start, int used, int target) {        
    // base case
    if (k == 0) {
        // 所有桶都被装满了,而且 nums 一定全部用完了
        return true;
    }
    if (bucket == target) {
        // 装满了当前桶,递归穷举下一个桶的选择
        // 让下一个桶从 nums[0] 开始选数字
        boolean res = backtrack(k - 1, 0, nums, 0, used, target);
        // 缓存结果
        memo.put(used, res);
        return res;
    }

    if (memo.containsKey(used)) {
        // 避免冗余计算
        return memo.get(used);
    }

    for (int i = start; i < nums.length; i++) {
        // 剪枝
        if (((used >> i) & 1) == 1) { // 判断第 i 位是否是 1
            // nums[i] 已经被装入别的桶中
            continue;
        }
        if (nums[i] + bucket > target) {
            continue;
        }
        // 做选择
        used |= 1 << i; // 将第 i 位置为 1
        bucket += nums[i];
        // 递归穷举下一个数字是否装入当前桶
        if (backtrack(k, bucket, nums, i + 1, used, target)) {
            return true;
        }
        // 撤销选择
        used ^= 1 << i; // 使用异或运算将第 i 位恢复 0
        bucket -= nums[i];
    }

    return false;
}

至此,这道题的第二种思路也完成了。

四、最后总结

本文写的这两种思路都可以算出正确答案,不过第一种解法即便经过了排序优化,也明显比第二种解法慢很多,这是为什么呢?

我们来分析一下这两个算法的时间复杂度,假设 nums 中的元素个数为 n

先说第一个解法,也就是从数字的角度进行穷举,n 个数字,每个数字有 k 个桶可供选择,所以组合出的结果个数为 k^n,时间复杂度也就是 O(k^n)

第二个解法,每个桶要遍历 n 个数字,对每个数字有「装入」或「不装入」两种选择,所以组合的结果有 2^n 种;而我们有 k 个桶,所以总的时间复杂度为 O(k*2^n)

当然,这是对最坏复杂度上界的粗略估算,实际的复杂度肯定要好很多,毕竟我们添加了这么多剪枝逻辑。不过,从复杂度的上界已经可以看出第一种思路要慢很多了。

所以,谁说回溯算法没有技巧性的?虽然回溯算法就是暴力穷举,但穷举也分聪明的穷举方式和低效的穷举方式,关键看你以谁的「视角」进行穷举。

通俗来说,我们应该尽量「少量多次」,就是说宁可多做几次选择,也不要给太大的选择空间;宁可「二选一」选 k 次,也不要 「k 选一」选一次。

好了,这道题我们从两种视角进行穷举,虽然代码量看起来多,但核心逻辑都是类似的,相信你通过本文能够更深刻地理解回溯算法。

————————————

本文就讲到这里,后台回复「目录」可查看精选文章目录,回复「PDF」可下载最新的刷题三件套,回复「打卡」可参与刷题打卡活动。更多高质量课程见公众号菜单!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值