Burnside引理 Polya定理

Burnside引理

设N={1,2,…,n},G是N上的置换群。令 G={σ1,σ2,...,σg},c1(σk)σk 的轮换表达式中1-轮换(恒等置换)的个数。又设M是不同的轨道个数,则有

M=1|G|k=1gc1(σk)

Polya定理

N={1,2,...,n},G={σ1,σ2,...,σg}N. 用m种颜色对N中的元素进行染色,则在G的作用下不同的染色方案数是

M=1|G|k=1gmc(σk)

c(σk)σk 1-轮换(恒等置换)在内的轮换个数.

相关证明
《离散数学教程》P410 链接:https://pan.baidu.com/s/1c3l8eCo 密码:q9z4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值