Burnside引理
设N={1,2,…,n},G是N上的置换群。令
G={σ1,σ2,...,σg},c1(σk)是σk
的轮换表达式中1-轮换(恒等置换)的个数。又设M是不同的轨道个数,则有
M=1|G|∑k=1gc1(σk)
Polya定理
设
N={1,2,...,n},G={σ1,σ2,...,σg}是N上的置换群.
用m种颜色对N中的元素进行染色,则在G的作用下不同的染色方案数是
M=1|G|∑k=1gmc(σk)
其中c(σk)是置换σk的轮换表示式中包括 1-轮换(恒等置换)在内的轮换个数.
相关证明
《离散数学教程》P410 链接:https://pan.baidu.com/s/1c3l8eCo 密码:q9z4