基于随机森林的红葡萄酒分析

本文探讨了如何利用随机森林算法对红葡萄酒的品质进行分析。通过收集多种特征如酒精含量、酸度、糖分等,构建模型来预测葡萄酒的质量等级。随机森林的并行性和准确性使其在该问题中表现出色,为葡萄酒行业提供了有价值的参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
import warnings
warnings.filterwarnings('ignore')

try:
    wine = pd.read_csv('winequality-red.csv',sep = ';')
except:
    print('cannot find the file!')
    
print(wine.info())
wine.describe()

wine.duplicated().sum() #检查是否有重复行
#删除重复记录
wine = wine.drop_duplicates()
wine.describe()
#查看quality目标属性具体每一类有多少值
wine.quality.value_counts()

#绘制饼图,直观看目标属性每一类的比例
wine.quality.value_counts().plot(kind = 'pie',autopct ='%.2f' )
#查看目标属性quality和其他特征属性的皮尔逊相关系数
win
### 红葡萄酒质量分析与预测 #### 探索性数据分析 (EDA) 为了有效开展红葡萄酒的质量分析,首先需要对数据进行全面的理解。这包括了解变量之间的关系以及它们如何影响最终的葡萄酒质量评分。 - **数据预处理** 加载并检查数据集的基本信息对于识别缺失值、异常值和其他潜在问题至关重要[^2]。可以使用Pandas库读取CSV文件,并调用`info()`函数查看每列的数据类型和非空计数;利用`describe()`获取数值型字段的统计摘要。 ```python import pandas as pd df = pd.read_csv('winequality-red.csv', sep=';') print(df.info()) print(df.describe()) ``` - **可视化特征分布** 绘制直方图或箱线图可以帮助直观展示各个属性的分布状况及其离群程度。Seaborn是一个强大的绘图工具包,在此场景下非常适合用来创建这些图形。 ```python import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(10,8)) sns.histplot(data=df['quality'], bins=7, kde=True) plt.title('Distribution of Wine Quality Scores') plt.show() ``` #### 特征选择与工程 并非所有的理化特性都会显著关联于葡萄酒的质量得分。因此,有必要筛选出最具影响力的因子作为建模输入。 - **相关系数矩阵** 计算各物理化学指标同目标变量间的皮尔逊相关系数能够揭示哪些因素最能解释质量变化趋势[^1]。热力图有助于更清晰地呈现这种联系强度。 ```python corr_matrix = df.corr() plt.figure(figsize=(12,10)) heatmap = sns.heatmap(corr_matrix, annot=True, fmt='.2f', cmap='coolwarm') plt.title('Correlation Matrix Heatmap') plt.show() ``` #### 构建预测模型 基于选定的关键特征建立回归算法或其他类型的监督学习器来进行质量等级预测是一项重要工作。这里推荐尝试几种不同的机器学习技术以比较其表现效果: - **随机森林分类器** 这种集成方法不仅具有良好的泛化能力而且易于实现超参数调整优化过程。 ```python from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score X = df.drop(columns=['quality']) y = df['quality'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) rfc = RandomForestClassifier(n_estimators=100, max_depth=None, min_samples_split=2, random_state=42) rfc.fit(X_train, y_train) predictions = rfc.predict(X_test) accuracy = accuracy_score(y_test, predictions) print(f'Random Forest Accuracy: {accuracy:.3f}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值