哪个才是数据科学的最佳Python IDE?

在开始学习Python之前,请选择最适合你的IDE。我们研究了许多可用的工具及其优缺点,并建议如何选择最佳的Python IDE。

为了帮助您选择正确的IDE,我们整理了一些用于Python的优秀IDE,这些IDE是专门为处理数据科学项目而创建的。它们是:

Atom

  • 平台–Linux/macOS/Windows
  • 官网–https://atom.io/
  • 类型–通用文本编辑器
    在这里插入图片描述

Atom是一个免费的开源文本和源代码编辑器,可用于许多编程语言,包括Java、PHP和Python。文本编辑器支持用Node.js编写的插件。虽然Atom可以用于许多编程语言,但它以其有趣的数据科学特性显示了对Python的特殊热爱。

Atom带来的最大特性之一是对SQL查询的支持。但是,你需要首先安装Data Atom插件来访问该特性。它支持Microsoft SQL Server、MySQL和PostgreSQL。此外,你可以可视化Atom中的结果,而不需要打开任何其他窗口。

优点:

  • 活跃的社区支持
  • 与Git的完美集成
  • 为管理多个项目提供支持

缺点:

  • 可能在较旧的cpu上遇到性能问题
  • 会遇到移植性的问题

Jupyter Notebook

  • 平台–Linux/macOS/Windows

  • 官网–https://jupyter.org/

  • 类型–基于Web的IDE
    在这里插入图片描述
    Jupyter Netbook诞生于2014年的IPython,是一个基于服务器-客户机结构的web应用程序。它允许您创建和操作称为Notbook的笔记本文档。对于Python数据科学家来说,Jupyter笔记本是必不可少的,因为它提供了最直观和交互式的数据科学环境之一。

优点:

  • 允许创建博客和演示从笔记本
  • 确保研究的可重复性
  • 在运行之前编辑代码片段

缺点:

  • 复杂的安装过程

PyCharm

  • 平台–Linux/macOS/Windows

  • 官网–https://www.jetbrains.com/pycharm/

  • 类型–专为Python打造的IDE
    在这里插入图片描述
    PyCharm是Python专用的IDE。PyCharm对于Python就像Eclipse对于Java一样。功能齐全的集成开发环境有免费版和付费版两种,分别称为社区版和专业版。它是使用简单设置之后最快安装的ide之一,数据科学家更喜欢使用它。

'''
需要免费破解版pycharm或者其他的一些Python编辑器工具都可以加群1136201545获取
'''

优点:

  • 活跃的社区支持
  • 事实上的Python开发,包括数据科学和非数据科学项目
  • 对于新手和老手都非常易于使用
  • 更快的重建索引
  • 无需任何外部要求即可运行、编辑和调试Python代码

缺点:

  • 可能加载比较慢
  • 默认设置可能需要调整一下,已有的项目才能使用

Rodeo

  • 平台–Linux/macOS/Windows

  • 官网–https://rodeo.yhat.com/

  • 类型–专为Python打造的IDE

带有橙色的徽标暗示了一个事实,即这个Python IDE是专门为执行数据分析而开发的。如果您有使用RStudio的经验,那么您将知道Rodeo与它有许多相同的特性。对于不了解RStudio的人来说,它是R语言最流行的集成开发环境。

与RStudio一样,Rodeo的窗口分为四个部分,即文本编辑器、控制台、变量可视化环境和plot/libraries/file。令人惊讶的是,Rodeo和RStudio都与MATLAB有很大的相似之处。

Rodeo最好的地方在于,它为新手和老手提供了同等程度的便利。由于Python IDE允许你在同时进行创建、查看和浏览,所以Rodeo无疑是那些使用Python开始数据科学的人的最佳IDE之一,Rodeo还拥有内置教程和辅助材料。

优点:

  • 有大量定制的东西
  • 实时查看和浏览你正在创建的内容
  • 编写代码更快与自动完成和语法突出功能,并支持IPython

缺点:

  • 很多bug
  • 支持不是那么活跃
  • 受内存问题困扰

Spyder

  • 平台–Linux/macOS/Windows

  • 官网–https://www.github.com/spyder-ide/spyder

  • 类型–专为Python打造的IDE

Spyder是一个开源的、专用于Python的IDE。IDE的独特之处在于它针对数据科学工作流进行了优化。它与Anaconda包管理器绑定,后者是Python编程语言的标准发行版。Spyder拥有所有必要的IDE特性,包括代码完成和集成文档浏览器。

优点:

  • 代码补全和变量浏览
  • 易于使用
  • 适用于数据科学项目
  • 简洁的界面
  • 活跃的社区支持

缺点:

  • 非数据科学项目能力不足
  • 对于高级Python开发人员来说太基础了

如何为Python选择最好的IDE

  • 这完全取决于你需要满足什么样的要求。尽管如此,以下是一些一般性建议:
  • 刚开始使用Python时,选择自定义更少、附加功能更少的IDE,干扰越少,就越容易开始。
  • 将IDE特性与你的期望进行比较
  • 尝试几种ide将帮助你更好地理解哪种ide最适合你的需求
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值