Python零基础入门到爬虫再到数据分析,这些你都是要学会的

678 篇文章 330 订阅
128 篇文章 21 订阅

1.必须知道的两组Python基础术语

'''
有需要Python学习资料的小伙伴吗?小编整理【一套Python资料、源码和PDF】
感兴趣者可以加:【python学习交流群:1136201545】,反正闲着也是闲着呢,不如学点东西啦~~
'''

A.变量和赋值

Python可以直接定义变量名字并进行赋值的,例如我们写出a = 4时,Python解释器干了两件事情:

  • 在内存中创建了一个值为4的整型数据
  • 在内存中创建了一个名为a的变量,并把它指向4

用一张示意图表示Python变量和赋值的重点:
在这里插入图片描述
例如下图代码,“=”的作用就是赋值,同时Python会自动识别数据类型:

a=4 #整型数据
b=2 #整型数据
c=4#字符串数据
d=2#字符串数据

print(“a+b结果为”,a+b)#两个整数相加,结果是6
print(“c+d结果为”,c+d)#两个文本合并,结果是文本“42”

#以下为运行结果
>>>a+b结果为 6
>>>c+d结果为 42

请阅读代码块里的代码和注释,你会发现Python是及其易读易懂的。

B.数据类型

在初级的数据分析过程中,有三种数据类型是很常见的:

  • 列表list(Python内置)
  • 字典dic(Python内置)
  • DataFrame(工具包pandas下的数据类型,需要import pandas才能调用)

它们分别是这么写的:

列表(list):

#列表
liebiao=[1,2.223,-3,'刘强东','章泽天','周杰伦','昆凌',['微博','B站','抖音']]

list是一种有序的集合,里面的元素可以是之前提到的任何一种数据格式和数据类型(整型、浮点、列表……),并可以随时指定顺序添加其中的元素,其形式是:

#ist是一个可变的有序表,所以,可以往list中追加元素到末尾:
liebiao.append('瘦')
print(liebiao)
#结果1
>>>[1, 2.223, -3, '刘强东', '章泽天', '周杰伦', '昆凌', ['微博', 'B站', '抖音'], '瘦']

#也可以把元素插入到指定的位置,比如索引号为5的位置,插入“胖”这个元素:
liebiao.insert(5, '胖')
print(liebiao)
#结果2
>>>[1, 2.223, -3, '刘强东', '章泽天', '胖', '周杰伦', '昆凌', ['微博', 'B站', '抖音'], '瘦']

字典(dict):

#字典
zidian={'刘强东':'46','章泽天':'36','周杰伦':'40','昆凌':'26'}

字典使用键-值(key-value)存储,无序,具有极快的查找速度。以上面的字典为例,想要快速知道周杰伦的年龄,就可以这么写:

zidian['周杰伦']
>>>'40'

dict内部存放的顺序和key放入的顺序是没有关系的,也就是说,"章泽天"并非是在"刘强东"的后面。

DataFrame:

DataFrame可以简单理解为Excel里的表格格式。导入pandas包后,字典和列表都可以转化为DataFrame,以上面的字典为例,转化为DataFrame是这样的:

import pandas as pd

df=pd.DataFrame.from_dict(zidian,orient='index',columns=['age'])#注意DataFrame的D和F是大写
df=df.reset_index().rename(columns={'index':'name'})#给姓名加上字段名

在这里插入图片描述
和excel一样,DataFrame的任何一列或任何一行都可以单独选出进行分析。

以上三种数据类型是python数据分析中用的最多的类型,基础语法到此结束,接下来就可以着手写一些函数计算数据了。

从Python爬虫学循环函数

掌握了以上基本语法概念,我们就足以开始学习一些有趣的函数。我们以爬虫中绕不开的遍历url为例,讲讲大家最难理解的循环函数for的用法:

A.for函数

for函数是一个常见的循环函数,先从简单代码理解for函数的用途:

zidian={'刘强东':'46','章泽天':'36','周杰伦':'40','昆凌':'26'}
for key in zidian:
        print(key)

>>>
刘强东
章泽天
周杰伦
昆凌

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不是每次都一样。默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时#迭代key和value,可以用for k, v in d.items()

可以看到,字典里的人名被一一打印出来了。for 函数的作用就是用于遍历数据。掌握for函数,可以说是真正入门了Python函数。

B.爬虫和循环

for函数在书写Python爬虫中经常被应用,因为爬虫经常需要遍历每一个网页,以获取信息,所以构建完整而正确的网页链接十分关键。以某票房数据网为例,他的网站信息长这样:
在这里插入图片描述
在这里插入图片描述
该网站的周票房json数据地址可以通过抓包工具找到,网址为http://www.cbooo.cn/BoxOffice/getWeekInfoData?sdate=20190114

仔细观察,该网站不同日期的票房数据网址(url)只有后面的日期在变化,访问不同的网址(url)就可以看到不同日期下的票房数据:
在这里插入图片描述
我们要做的是,遍历每一个日期下的网址,用Python代码把数据爬下来。此时for函数就派上用场了,使用它我们可以快速生成多个符合条件的网址:

import pandas as pd

url_df = pd.DataFrame({'urls':['http://www.cbooo.cn/BoxOffice/getWeekInfoData?sdate=' for i in range(5)],'date' :pd.date_range(20190114,freq = 'W-MON',periods = 5)})

'''
将网址相同的部分生成5次,并利用pandas的时间序列功能生成5个星期一对应的日期。
其中用到了第一部分提供的多个数据类型:
range(5)属于列表,
'urls':[]属于字典,
pd.dataframe属于dataframe
'''
url_df['urls'] = url_df['urls'] + url_df['date'].astype('str')

在这里插入图片描述
为了方便理解,我给大家画了一个for函数的遍历过程示意图:
在这里插入图片描述

3.Python怎么实现数据分析?

A.Python分析

在做好数据采集和导入后,选择字段进行初步分析可以说是数据分析的必经之路。在Dataframe数据格式的帮助下,这个步骤变得很简单。

比如当我们想看单周票房第一的排名分别都是哪些电影时,可以使用pandas工具库中常用的方法,筛选出周票房为第一名的所有数据,并保留相同电影中周票房最高的数据进行分析整理:

import pandas as pd
data = pd.read_csv('中国票房数据爬取测试20071-20192.csv',engine='python')
data[data['平均上座人数']>20]['电影名']
#计算周票房第一随时间变化的结果,导入数据,并选择平均上座人数在20以上的电影为有效数据

dataTop1_week = data[data['排名']==1][['电影名','周票房']]
#取出周票房排名为第一名的所有数据,并保留“电影名”和“周票房”两列数据

dataTop1_week = dataTop1_week.groupby('电影名').max()['周票房'].reset_index()
#用“电影名”来分组数据,相同电影连续霸榜的选择最大的周票房保留,其他数据删除

dataTop1_week = dataTop1_week.sort_values(by='周票房',ascending=False)
#将数据按照“周票房”进行降序排序

dataTop1_week.index = dataTop1_week['电影名']
del dataTop1_week['电影名']
#整理index列,使之变为电影名,并删掉原来的电影名列

dataTop1_week
#查看数据

在这里插入图片描述
9行代码,我们完成了Excel里的透视表、拖动、排序等鼠标点击动作。最后再用Python中的可视化包matplotlib,快速出图:
在这里插入图片描述
B.函数化分析

以上是一个简单的统计分析过程。接下来就讲讲Excel基础功能不能做的事——自定义函数提效。观察数据可以发现,数据中记录了周票房和总票房的排名,那么刚刚计算了周票房排名的代码,还能不能复用做一张总票房分析呢?
在这里插入图片描述
当然可以,只要使用def函数和刚刚写好的代码建立自定义函数,并说明函数规则即可:

def pypic(pf):
    #定义一个pypic函数,变量是pf
    dataTop1_sum = data[['电影名',pf]]
    #取出源数据中,列名为“电影名”和pf两列数据

    dataTop1_sum = dataTop1_sum.groupby('电影名').max()[pf].reset_index()
    #用“电影名”来分组数据,相同电影连续霸榜的选择最大的pf票房保留,其他数据删除

    dataTop1_sum = dataTop1_sum.sort_values(by=pf,ascending=False)
    #将数据按照pf进行降序排序

    dataTop1_sum.index = dataTop1_sum['电影名']
    del dataTop1_sum['电影名']
    #整理index列,使之变为电影名,并删掉原来的电影名列

    dataTop1_sum[:20].iloc[::-1].plot.barh(figsize = (6,10),color = 'orange')
    name=pf+'top20分析'
    plt.title(name)
    #根据函数变量名出图

在这里插入图片描述
学会函数的构建,一个数据分析师才算真正能够告别Excel的鼠标点击模式,迈入高效分析的领域。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值