随机数产生----服从均匀分布的随机变量随机数产生

离散型均匀分布Matlab相关随机函数

  1. unidrnd(): 产生服从离散型随机均匀分布的随机数

代码语法:

1) r = unidrnd(n) % 产生小于等于n的离散型分布的随机数。n可以为标量,向量或矩阵,或者多维度的排列
2) r = unidrnd(n, sz1,sz2,...,szN)%产生维度为(sz1,sz2,...,szN)的小于等于n的离散型分布的随机数
3) r = unidrnd(n,sz)%产生维度为用sz行向量表示的维度的小于等于n的离散型分布的随机数
  1. unidcdf(): 离散均匀分布累积分布函数
    代码语法:
1) p = unidcdf(x,N) % 返回任意以最大值为N的离散型均匀分布的任意数值x的累积概率
2) p = unidrnd(x,N,'upper')%返回从数值x起始到最大值的累积概率
  1. unidpdf(): 离散均匀分布概率密度函数
    离散型的概率密度函数可表示为
    y = f ( x ∣ N ) = 1 N I 1 , … , N ( x ) y=f(x|N)=\frac{1}{N}I_{1,\ldots,N}(x) y=f(xN)=N1I1,,N(x)

代码语法:

 Y = unidpdf(x,N) % 返回最大观测值为 N 时任意取值 x 的概率密度函数值。其中 x,N 可以为标量,矢量与矩阵。为非标量时需同维度。
  1. unidinv(): 离散均匀分布累积分布函数的逆运算

代码语法:

 X = unidpdf(P,N) % 返回使得取值X的概率等于或超过概率P的最小X取值
  1. unidstat():求离散型均匀分布的均值与方差

代码语法:

 [M,V] = unidstat(N) % 返回最大观测值为N的服从离散型均匀分布的均值与方差

信息查看:Statistics and Machine Learning Toolbox
相关随机模拟: help random

连续型均匀分布Matlab相关随机函数

rand():产生区间(0,1)内的随机数
X = randi(imax) 产生1到imax之间的一个伪随机整数

均匀分布理论概念

均匀分布分为离散型均匀分布与连续型均匀分布。

离散型均匀分布

概念

若随机变量具有 n n n 个不同的值,且取得各个值的概率相同,则我们称之为离散型概率均匀分布。如投掷骰子。

定义

设离散随机变量 X X X 可能的取值有 1 , 2 , 3 , … , n 1,2,3,\ldots, n 1,2,3,,n 若其概率函数为
f ( x ) = 1 n f(x)=\frac{1}{n} f(x)=n1 则此中概率分配称为离散型均匀分布

统计学性质

  1. 均值。 E ( X ) = n + 1 2 E(X) = \frac{n+1}{2} E(X)=2n+1.
    E ( X ) = ∑ x = 1 n x 1 n = 1 n ( 1 + 2 + … + n ) = 1 n n ( n + 1 ) 2 = n + 1 2                ( 1 ) \begin{aligned} E(X) &=\sum_{x=1}^n x\frac{1}{n}\\&=\frac{1}{n}(1+2+\ldots+n)\\&=\frac{1}{n}\frac{n(n+1)}{2}\\&= \frac{n+1}{2} \end{aligned}~~~~~~~~~~~~~~(1) E(X)=x=1nxn1=n1(1+2++n)=n12n(n+1)=2n+1              (1).
  2. 方差。 D ( X ) = n 2 − 1 12 D(X) = \frac{n^2-1}{12} D(X)=12n21
    D ( X ) = E ( X − E ( X ) ) 2 = E ( X 2 − 2 X E ( X ) + ( E ( X ) ) 2 ) = E ( X 2 ) − ( E ( X ) ) 2 \begin{aligned} D(X) &=E(X-E(X))^2\\ \quad\quad &=E(X^2-2XE(X)+(E(X))^2)\\&=E(X^2)-(E(X))^2 \end{aligned} D(X)=E(XE(X))2=E(X22XE(X)+(E(X))2)=E(X2)(E(X))2. E ( X 2 ) = ∑ x = 1 n x 2 ∗ 1 n = n ( n + 1 ) ( 2 n + 1 ) 6 ∗ 1 n = ( n + 1 ) ( 2 n + 1 ) 6 \begin{aligned} E(X^2)&=\sum_{x=1}^{n}x^2*\frac{1}{n}\\&=\frac{n(n+1)(2n+1)}{6}*\frac{1}{n}\\&=\frac{(n+1)(2n+1)}{6} \end{aligned} E(X2)=x=1nx2n1=6n(n+1)(2n+1)n1=6(n+1)(2n+1) D ( X ) = n 2 − 1 12 D(X) =\frac{n^2-1}{12} D(X)=12n21

连续型均匀分布

概念

任意一个数值散布于某区间 ( α , β ) (\alpha, \beta) (α,β) 内发生的概率一样时,称之为连续型均匀分布。

定义

X X X 为一随机数,若其概率密度函数为
f ( x ) = { 1 β − α , α < x < β 0 , o t h e r w i s e f(x)=\begin{cases} \frac{1}{\beta-\alpha}, \alpha<x<\beta\\ 0, otherwise \end{cases} f(x)={βα1,α<x<β0,otherwise
则称变量 X X X 为在区间 ( α , β ) (\alpha, \beta) (α,β) 内均匀分布的随机变量。可表示为 X X X~ U ( α , β ) U(\alpha,\beta) U(α,β)

统计学性质

  1. 均值。 E ( X ) = α + β 2 E(X)=\frac{\alpha+\beta}{2} E(X)=2α+β
  2. 方差。 D ( X ) = ( β − α ) 2 12 D(X)=\frac{(\beta-\alpha)^2}{12} D(X)=12(βα)2

参考文献

https://wenku.so.com/d/fa4058ad45a44eb3ef1e3f9af3acbf99

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值