一、什么是生成引擎优化 GEO?
GEO是一种针对AI驱动的搜索引擎(例如 Deepseek、Perplexity、秘塔搜索 和 ChatGPT)优化内容的做法。这些 AI 模型不会对网页进行排名,而是通过综合来自多个来源的信息来生成响应。
知名科技资讯网站 [TechCrunch(Yahoo)] 在其关于新兴AI技术应用的系列报道中提到,当下这类AI模型正重塑信息检索格局,它们不会对网页进行传统意义上的排名,而是凭借强大的算法,通过综合来自多个来源的信息来生成响应,为用户提供全新的交互体验。
二、生成式引擎的工作原理?
生成式人工智能引擎综合大量数据,为用户查询提供简洁、全面的响应。 这些引擎使用能够理解和处理自然语言的高级机器学习模型,提供相关且语境丰富的答案。与仅列出网页的传统搜索引擎不同,生成式AI引擎可以创建对话式且细致入微的响应。
以下是生成式人工智能引擎的工作原理:
数据收集:引擎从各种来源收集大量数据,以创建全面的知识库。
预处理:对收集的数据进行清理和格式化,以准备进行训练。此阶段涉及标准化数据、消除噪音和确保一致性。
模型训练:机器学习模型在这些预处理数据上进行训练,以理解和处理自然语言。这涉及教模型识别模式、理解上下文和解释语言。
推理和微调:经过训练的模型针对特定任务进行微调,以提高其在某些查询上的性能。微调会调整模型参数以更好地处理特定类型的问题或主题。
内容生成:AI引擎采用经过训练的模型,并用它来生成对用户查询的响应。在此过程中AI会从其庞大的知识库中综合信息,结合相关数据点,将其情境化,并形成连贯、全面的答案。输出的不仅仅是事实列表,而是一个结构良好、对话式的响应,可直接解决用户的问题。
评估和优化:对生成的内容进行质量和相关性评估。评估的反馈将用于进一步完善模型,改善未来的响应。
优先级:人工智能根据内容的相关性、质量和上下文对内容进行优先排序。