摘要
图神经网络(GNN)最近已经成为图上机器学习任务的革命性技术。在GNN中,图结构通常通过消息传递方案与节点表示相结合,这使得解释更具挑战性。给定经训练的GNN模型,GNN解释器旨在识别最有影响力的子图以解释实例的预测(例如,节点或图),其本质上是图上的组合优化问题。现有的作品解决这个问题的连续松弛或基于搜索的启发式。但它们存在一些关键问题,如违反消息传递和手工制作的启发式,导致较差的可解释性。为了解决这些问题,我们提出了一个RL增强的GNN解释器,RG-Explainer,它由三个主要组件组成:起始点选择、迭代图生成和停止准则学习。RG-Explainer可以通过从当前生成的图的边界顺序添加节点来构造连通的解释子图,这与消息传递方案一致。此外,我们设计了一个有效的种子定位器来选择起始点,并学习停止标准,以产生上级的解释。在合成数据集和真实的数据集上的广泛实验表明,RG-Explainer的性能优于最先进的GNN解释器。此外,RG-Explainer可以应用于归纳设置,展示了更好的泛化能力。
1引言
图神经网络(GNNs)通过利用消息传递方案将图结构与节点特征结合起来,在无处不在的图数据上扩展神经网络模型。他们不仅在图上的经典机器学习任务中实现了最先进的性能,例如,节点分类[10,28],链接预测[38]和图分类[33],而且在推理任务中,例如,直觉物理学[4]、数学推理[24]和智商测试[3]。与大多数深度学习方法类似,GNN的一个主要限制是缺乏预测结果的可解释性;通常需要事后分析来解释结果。
为了增强GNN的可解释性,一系列工作[34,17&#