Abstract
可解释性对于探索图神经网络(GNN)至关重要,回答诸如“为什么GNN模型做出某种预测?"之类的问题。特征属性是一种在输入图中突出显示解释性子图的流行技术,它似乎可以引导GNN模型做出预测。已经提出了各种归因方法来利用类梯度或注意力得分作为边缘的归因,然后选择具有最高归因得分的显著边缘作为解释。然而,大多数的工作都做了一个站不住脚的假设–选择的边是线性独立的–从而使得边之间的依赖性在很大程度上没有被探索,特别是它们的联盟效应。我们证明了这个假设的明显缺点–使解释子图不忠实和冗长。为了解决这一挑战,我们提出了一个强化学习代理,强化因果解释器(RC解释器)。它将解释任务框定为一个连续的决策过程–通过添加一个突出的边来连接先前选择的子图,从而连续地构建一个解释子图。从技术上讲,它的策略网络预测了边缘添加的行为,并获得了量化该行为对预测的因果影响的奖励。这种奖励解释了新加入的边和先前加入的边之间的依赖性,从而反映了它们是否合作并形成联盟以寻求更好的解释。该算法通过策略梯度进行训练,优化边缘序列的回报流。因此,RC-Explainer能够生成忠实而简洁的解释,并且对看不见的图具有更好的泛化能力。在三个图分类数据集上解释不同的GNN时,RC-Explainer实现了比当前最先进方法更好或相当的性能。两个定量指标:预测准确性、对比度,并安全地通过健全性检查和视觉检查。
1.INTRODUCTION
图神经网络(GNNs)[1],[2]在各种任务中表现出令人印象深刻的性能,其中数据是图形结构的。他们的成功主要来自于强大的表征学习,它以端到端的方式结合了图结构。除了性能,可解释性成为GNN实际影响的核心,特别是在公平性、安全性和鲁棒性的现实应用中[3],[4],[5]。为了回答诸如“为什么GNN模型做出了某种预测?”我们关注于事后[6]、局部[7]、模型不可知[8]的可解释性-即,将目标GNN模型视为黑盒(即,事后),这是适用于到任何GNN(即,模型不可知)。为此,一种流行的范式是特征归因和选择[9]、[10]、[11]、[12]。通常,给定输入图,它将模型的结果预测分配给输入特征(即,边),然后选择显著子结构(即,边的子集)作为解释性子图。这种解释性子图有望提供对模型工作的深入了解。为了实现高质量的特征归因,揭示GNN模型中输入特征和结果预测之间的关系是至关重要的。大多数现有的解释者通过(1)类梯度信号w.r.t.边[13]、[14]、[15],其通过将模型结果反向传播到图结构而获得;(2)边缘[16]、[17]、[18]的掩码或注意力分数,其从掩码函数或注意力网络导出以经由分数(掩码或注意力)图来近似目标预测;或者(3)扰动边[4]、[19]、[20]上的预测变化,其通过扰动图结构来获取,诸如将子图排除在外并审计结果变化[19]或计算Shapley值[4]。随后,具有顶部属性的边的子集构成对模型的决策最有影响的解释性子图。
尽管如此,我们认为这些解释者倾向于产生次优解释,因为两个关键因素在很大程度上仍未被探索:
-
边缘的因果效应。这是至关重要的,以指定的边缘,是似是而非的因果关系的模型结果,而不是与结果无关或虚假相关的边缘[21],[22]。然而,由于使用梯度和注意力类得分的解释者通常从联想的角度来处理输入-结果关系,他们很难区分边缘的因果和非因果效应。以图1为运行示例,其中SA [13]和GNNExplainer [16]解释了GIN模型[23]预测分子图具有致突变性