Python应用总结

本文介绍了Python编程中的实用操作,包括阿姆斯特朗数的概念及检测,字符串操作,计算每个月的天数,获取日历,获取昨天日期,ASCII码与字符的转换,以及最大公约数和最小公倍数的算法实现。
摘要由CSDN通过智能技术生成

Python 阿姆斯特朗数

如果一个n位正整数等于其各位数字的n次方之和,则称该数为阿姆斯特朗数。 例如1^3 + 5^3 + 3^3 = 153。1000以内的阿姆斯特朗数: 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407。以下代码用于检测用户输入的数字是否为阿姆斯特朗数。

num = int(input("请输入一个数字:"))
sum = 0
n = len(str(num))
temp = num

while temp > 0:
    digit = temp % 10
    sum += digit**n
    temp = temp // 10
if num == sum:
    print(num,"是阿姆斯特朗数")
else:
    print(num,"不是阿姆斯特朗数")

获取指定期间内的阿姆斯特朗数

lower = int(input("最小值: "))
upper = int(input("最大值: "))

for num in range(lower,upper + 1):
   # 初始化 sum
   sum = 0
   # 指数
   n = len(str(num))

   # 检测
   temp = num
   while temp > 0:
       digit = temp % 10
       
会计研究中文本数据的重要性显着增加。 为了帮助研究人员理解和使用文本数据,本专着定义和描述了文本数据的常用度量,然后演示了使用 Python 编程语言收集和处理文本数据。 该专着充满了示例代码,这些代码复制了最近研究论文中的文本分析任务。在专着的第一部分中,我们提供了 Python 入门指南。 我们首先描述 Anaconda,它是 Python 的一个发行版,它提供了文本分析所需的库及其安装。 然后,我们介绍了 Jupyter notebook,这是一种改进研究工作流程并促进可复制研究的编程环境。 接下来,我们将教授 Python 编程的基础知识,并演示使用 Pandas 包中的表格数据的基础知识。专着的第二部分重点介绍会计研究中常用的特定文本分析方法和技术。 我们首先介绍正则表达式,这是一种用于在文本中查找模式的复杂语言。 然后我们将展示如何使用正则表达式从文本中提取特定部分。 接下来,我们介绍将文本数据(非结构化数据)转换为表示感兴趣变量(结构化数据)的数值度量的想法。 具体来说,我们介绍了基于字典的方法:1) 测量文档情绪,2) 计算文本复杂度,3) 识别前瞻性句子和风险披露,4) 收集文本中的信息量,以及 5) 计算不同片段的相似度文本。 对于这些任务中的每一个,我们都引用了相关论文并提供了代码片段来实现这些论文中的相关指标。最后,专着的第三部分侧重于自动化文本数据的收集。 我们介绍了网络抓取并提供了从 EDGAR 下载文件的代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值