[2025 M3W2]光刻机、芯片、人工智能、机器人领域国内外学界进展

系列文章目录

[2025-2-19]光刻机、芯片、人工智能、机器人领域国内外学界进展
[2025-2-21]光刻机、芯片、人工智能、机器人领域国内外学界进展
[2025-2-22/23周末]光刻机、芯片、人工智能、机器人领域国内外学界进展
[2025-2-24]光刻机、芯片、人工智能、机器人领域国内外学界进展
[2025-2-25]光刻机、芯片、人工智能、机器人领域国内外学界进展
[2025-2-26]光刻机、芯片、人工智能、机器人领域国内外学界进展
[2025-3/1~2]光刻机、芯片、人工智能、机器人领域国内外学界进展



一、光刻机/半导体领域

  • ASML发布2024年年度报告,总净销售额达到283亿欧元

    • 财务业绩总结 (Financial Performance)

    ASML在2024年再次展现了强劲的财务表现,总净销售额达到283亿欧元,相较2023年的275.59亿欧元略有增长。尽管宏观经济环境复杂多变,但ASML依然保持了51.3%的稳健毛利率,与上一年持平,显示出其卓越的运营效率和成本控制能力。净利润方面,2024年为75.72亿欧元,略低于2023年的78.39亿欧元。每股收益为19.25欧元。值得注意的是,ASML在2024年末持有127.41亿欧元的现金及现金等价物和短期投资,较2023年末的70.10亿欧元大幅增加,表明公司拥有充裕的资金储备和强大的财务实力。

    从销售构成来看,ASML的收入来源主要分为新光刻系统销售和安装基础管理销售。2024年,新光刻系统销量为380台,略低于2023年的421台,二手光刻系统销量为38台,高于2023年的28台。安装基础管理销售额持续增长,从2023年的56.20亿欧元增长至64.94亿欧元,这部分收入的增长体现了ASML服务业务的稳健性和客户对其设备长期价值的认可。净预订额为188.99亿欧元,略低于2023年的200.40亿欧元,但仍然保持在非常健康的水平,为未来的收入增长奠定了基础。

    • 研发投入与创新 (Research & Development)

    ASML持续大力投入研发,以保持其在光刻技术领域的领先地位。年度报告中虽然没有明确指出2024年的研发总额,但强调了其对技术创新的长期承诺。ASML的研发投入主要集中在以下几个关键领域:

    EUV(极紫外光刻)技术的持续精进: EUV光刻技术是制造最先进芯片的关键,ASML是该领域的绝对领导者。2024年,ASML继续投入研发,以提升EUV系统的性能、良率和生产效率,满足客户对更高精度、更高性能芯片制造的需求。

    High-NA EUV 技术的研发和商业化: High-NA EUV是下一代EUV技术,能够进一步提升光刻分辨率,实现更小尺寸的芯片制造。ASML在High-NA EUV技术的研发上取得了重要进展,并预计在未来几年内实现商业化应用,这将巩固ASML在未来芯片制造技术领域的领先地位。

    DUV(深紫外光刻)技术的优化和扩展: 尽管EUV技术日益重要,DUV光刻技术在芯片制造中仍然扮演着关键角色。ASML持续优化DUV技术,包括ArFi浸没式光刻等,以满足不同应用场景的需求,并扩展DUV技术的应用范围。

    计算光刻和软件解决方案的开发: 随着芯片设计复杂度的提升,计算光刻和软件解决方案在提升光刻性能和良率方面变得越来越重要。ASML在这些领域也进行了大量的研发投入,开发先进的软件工具和算法,以优化光刻工艺,提升客户的生产效率。

    • 销售与市场拓展 (Sales & Market Expansion)

    ASML的销售业绩与全球半导体行业的景气度密切相关。2024年,尽管面临全球经济下行和地缘政治风险等挑战,ASML依然取得了稳健的销售业绩。其销售策略主要围绕以下几个方面:

    深耕现有客户: ASML与全球顶尖的芯片制造商保持着紧密的合作关系,包括台积电、三星、英特尔等。通过持续的技术创新和优质的服务,ASML不断巩固和深化与现有客户的合作,确保其在客户设备采购中的优先地位。

    拓展新兴市场: 除了传统的半导体制造强国,ASML也在积极拓展新兴市场,例如中国大陆。尽管面临一些限制,但中国仍然是全球最大的半导体市场之一,ASML在中国市场仍然拥有巨大的发展潜力。

    多元化应用领域: ASML的光刻系统不仅应用于传统的逻辑芯片和存储芯片制造,还在积极拓展其在功率器件、模拟芯片、先进封装等新兴应用领域的应用。通过多元化应用领域,ASML可以降低对单一市场或应用的依赖,提升业务的稳定性。

    加强客户服务与支持: ASML高度重视客户服务与支持,建立了全球化的服务网络,为客户提供全方位的技术支持、设备维护和升级服务。优质的客户服务不仅可以提升客户满意度,也有助于建立长期的合作关系,并带来持续的收入来源。

    • 战略发展方向 (Strategic Development)

    ASML的战略发展方向紧密围绕其“推动技术进步”的使命,并着眼于半导体行业的长期发展趋势。其战略重点包括:

    技术领先战略: 持续加大研发投入,保持在光刻技术领域的绝对领先地位,特别是EUV和High-NA EUV技术。通过技术创新,不断提升光刻系统的性能、效率和成本效益,为客户提供更具竞争力的解决方案。

    可持续发展战略: ASML高度重视可持续发展,并将可持续发展纳入其核心战略。2024年的年度报告首次按照欧洲可持续发展报告标准 (ESRS) 纳入了可持续发展声明,体现了其对环境、社会和治理 (ESG) 议题的重视。ASML致力于在自身运营和产品开发中降低环境影响,并推动整个半导体行业的可持续发展。

    全球化布局战略: ASML在全球范围内建立了广泛的业务布局,包括研发中心、生产基地、客户服务中心等。全球化布局有助于ASML更好地服务全球客户,并应对地缘政治风险。未来,ASML将继续优化其全球布局,提升其全球运营效率和灵活性。

    价值创造战略: ASML致力于为客户、股东、员工和社会创造长期价值。通过技术创新、卓越运营和可持续发展,ASML不断提升其盈利能力和市场竞争力,为股东带来回报。同时,ASML也重视员工发展和社会责任,努力成为一家优秀的企业公民。

  • 来源:2024 Annual Report

  • 台积电在美国大规模投资 – 九个工厂投资 1650 亿美元
    在中美贸易摩擦持续升级的背景下,全球最大芯片代工厂商台积电(TSMC)宣布将在美国亚利桑那州追加 1000 亿美元投资,使其总投资额达到 1650 亿美元。这一战略布局不仅重塑全球半导体制造格局,更折射出地缘政治对高科技产业的深远影响。

    本次投资将分阶段建设三座先进制程晶圆厂、两座封装测试中心及一座研发基地,预计创造 4 万个建筑岗位和 2 万个高科技岗位。值得关注的是,美国总统特朗普在白宫发布会上特别强调,这些设施将生产全球最先进的 AI 芯片,满足苹果、AMD、英伟达等企业的需求。这一表态暗示台积电可能将其最尖端的 3 纳米及以下工艺引入美国,突破此前仅在台湾本土部署先进制程的惯例。

    地缘政治因素成为此次投资的核心驱动力。美国政府通过《芯片与科学法案》提供 520 亿美元补贴的同时,以 100% 关税威胁迫使台积电加速本地化生产。台湾地区行政机构负责人赵贞吉表示,台美双方保持了 “持续沟通与理解”,侧面印证了台湾当局在此次投资中的斡旋角色。数据显示,台湾对美投资占其对外投资总额的 30%,而对大陆投资占比已降至 7.5%,并呈持续下降趋势。

    这一决策对全球半导体供应链产生深远影响。台积电美国工厂将构建起包含设计、制造、封装的完整产业链,与三星奥斯汀工厂、英特尔俄勒冈基地形成协同效应。市场调研机构 Counterpoint 预测,到 2027 年,美国本土芯片产能占比将从目前的 12% 提升至 20%,显著缓解高端芯片供应短缺问题。但这也意味着台积电在台湾的产能占比将从当前的 60% 降至 50% 以下,削弱其作为全球半导体制造中心的地位。

    对行业竞争格局而言,台积电的扩张直接冲击英特尔的战略布局。英特尔此前以 “国家安全” 为核心诉求,推动美国政府扶持本土制造,但此次台积电的 1650 亿美元投资使其成为美国历史上最大规模的外资直接投资之一。不过,这也为英特尔出售其代工业务(IFS)提供了市场契机,潜在买家可能包括苹果、谷歌等科技巨头。

    技术层面,台积电计划在亚利桑那州部署其最先进的纳米片晶体管技术,与台湾本土工厂同步推进 2 纳米工艺研发。封装测试环节将采用 CoWoS(Chip on Wafer on Substrate)等先进技术,支持 Chiplet 异构集成。研发中心将重点攻关量子计算、第三代半导体材料等前沿领域,预计每年投入 20 亿美元。

    尽管面临建厂成本高昂(每座晶圆厂建设成本超 200 亿美元)、技术人才短缺等挑战,台积电仍通过政府补贴、税收优惠等政策工具降低风险。值得注意的是,其投资决策与美国 “友岸外包”(Friend-shoring)战略高度契合,通过将关键产能转移至盟友国家,规避潜在的地缘冲突风险。

  • 来源:TSMC storsatsar i USA – nio faciliteter för 165 miljarder USD

  • 微小的恒星爆炸推动摩尔定律
    ASML 公司在开发极紫外(EUV)光刻技术时,通过模拟超新星爆炸的物理机制,成功解决了半导体制造领域的核心难题。EUV 光刻需将 30 微米锡液滴加热至 20 万℃形成等离子体,产生 13.5 纳米波长的光,但等离子体爆炸产生的高速碎片(初始速度达数万米 / 秒)会污染设备。研究团队发现,锡等离子体爆炸与超新星爆发存在相似性:二者均在低密度氢环境中产生冲击波。通过应用天体物理中的泰勒 - 冯・诺依曼 - 谢多夫公式(描述冲击波半径随时间演化),结合天文观测工具(如 H-α 滤光片和超快相机),团队精确测量了爆炸能量,并优化氢气流动参数,将碎片清除效率提升至可商用水平。这一跨尺度类比(超新星跨度数十光年 vs 锡爆炸毫米级)突破了传统工程思维,使 EUV 光刻机实现每秒 5 万次稳定爆炸,年运行超 1 万亿次,支撑 5 纳米以下芯片量产,维持了摩尔定律的延续。该成果不仅推动半导体工业进入新纪元,更体现了基础科学(天体物理)与工程技术的深度融合,验证了同一物理规律在跨尺度现象中的普适性。

  • 来源:The Tiny Star Explosions Powering Moore’s Law

  • 泛林半导体荷兰新设施启用:强化欧洲 PLD 技术领导地位
    泛林半导体(Lam Research)于 2025 年 3 月宣布在荷兰恩斯赫德启用全新研发设施,同时庆祝其脉冲激光沉积(PLD)技术创新三周年里程碑。该设施将作为泛林欧洲区 PLD 技术开发中心,配备 100 平方米洁净室及先进研发设备,聚焦下一代半导体器件的材料与工艺开发。
    新设施的战略定位体现在三大核心方向:首先,支撑客户技术验证与量产方案优化,特别是针对 5G 通信所需的 MEMS 麦克风和射频滤波器,以及光电子领域的光学薄膜应用;其次,深化与欧洲顶尖科研机构的合作,包括荷兰代尔夫特理工大学、国际微电子研究中心(imec)、法国 CEA Leti 研究所等,依托特温特大学的材料科学优势,构建产学研协同创新网络;最后,加速专利技术转化,目前该团队已持有 16 项 PLD 相关专利,涵盖铝钪氮(AlScN)等关键材料的沉积工艺优化。

    技术层面,泛林通过 2022 年收购 Solmates 公司(原特温特大学衍生企业)获得的 PLD 技术积累,于 2024 年推出全球首款量产型 PLD 设备 Prestis™。该设备基于 2300® 平台,在保持材料均匀性和薄膜质量的同时,将单晶圆处理成本降低至传统物理气相沉积(PVD)的三分之一以下,可实现多元素复杂材料的高精度沉积。数据显示,Prestis™已成功应用于 MEMS 器件量产,客户订单覆盖消费电子、通信设备等领域。

    设施扩建后,恩斯赫德团队规模将从当前 35 人扩展至百人,进一步强化泛林在特种工艺领域的技术领导力。通过整合欧洲创新资源,泛林正加速布局第三代半导体材料、量子器件等前沿领域,其技术路线图显示,未来将重点突破二维材料异质结集成、极端环境传感器等关键技术。该战略举措不仅巩固了泛林在全球半导体设备市场的份额,更为欧洲半导体产业链自主化提供了关键支撑。

  • 来源:Lam Research Opens New Netherlands Facility, Marks PLD Innovation Milestone

  • 日本企业研发薄膜 3D 模拟 IC:推动异构集成与芯片小型化
    日本冲电气工业株式会社(OKI)与日新电机株式会社(Nisshinbo Micro Devices)合作开发的薄膜 3D 模拟集成电路技术,为模拟芯片的微型化、低成本化与多功能集成提供了创新解决方案。该技术通过垂直堆叠工艺,突破了传统平面集成的物理限制,在 AI、物联网、自动驾驶等领域展现出广阔的应用前景。

    模拟集成电路在信号处理、电源管理等领域具有不可替代性,其全球市场规模预计 2025 年将达 850 亿美元。面对 AI、自动驾驶等新兴技术对传感器与模数转换的更高需求,两家公司通过晶体薄膜键合(CFB)工艺实现了模拟 IC 的三维堆叠。OKI 的 CFB 技术通过分子间作用力将仅 5-10 微米厚的薄膜层垂直键合,避免了传统硅通孔(TSV)工艺所需的复杂设备与高昂成本。这种堆叠方式不仅将芯片厚度降低 90% 以上,还可通过逐层旋转 90 度的独特设计实现四层以内的电路互联,显著提升空间利用率。

    然而,超薄堆叠带来的层间串扰问题成为技术关键。Nisshinbo 通过专有屏蔽技术解决了这一挑战:在关键干扰区域局部覆盖铝制屏蔽层,既避免了全层屏蔽导致的 20-30V 高压模拟电路寄生电容问题,又保持了信号完整性。这种基于数十年模拟电路设计经验的精准屏蔽策略,使堆叠后的芯片性能稳定可靠。

    该技术的另一创新在于为 Chiplet(芯粒)集成提供了新路径。通过将传感、处理、电源管理等功能模块独立优化为芯粒,再通过 3D 堆叠实现异构集成,可降低单颗芯片复杂度,提升良率并缩短研发周期。例如,自动驾驶系统中的激光雷达信号处理模块可采用多颗模拟芯粒堆叠,在更小体积内实现更高精度的信号转换。

    但专家指出,超薄芯片的制造与封装仍存在挑战。麦吉尔大学教授 Gordon Roberts 强调,减薄工艺可能引入裂纹等缺陷,影响长期可靠性。此外,混合集成不同工艺节点的芯粒时,如何保证热管理与信号同步也是未来需要解决的问题。

    OKI 与 Nisshinbo 计划 2026 年实现量产,初期将聚焦汽车电子与工业控制领域。随着 5G 通信、边缘计算等技术发展,该技术有望推动智能设备向更小尺寸、更低功耗方向演进。这种将模拟电路设计与先进封装技术结合的创新模式,为半导体行业应对摩尔定律放缓提供了新的技术路径。

  • 来源:Japanese Companies Develop Thin-film 3D Analog ICs

  • 英特尔将继续将高达 30%的晶圆生产外包给台积电
    在 2025 年 3 月的摩根士丹利科技媒体与电信会议上,英特尔投资者关系副总裁 John Pitzer 围绕公司战略转型与行业趋势展开阐述。尽管经历 CEO 更替,英特尔仍延续 “IDM 2.0” 战略框架,聚焦 18A(RibbonFET)和 20A(PowerVia)工艺研发,计划 2025 年实现 18A 量产,2026 年推出 20A 工艺。

    数据显示,18A 工艺 SRAM 单元面积较前代缩小 40%,能效比提升 25%,为高性能计算与 AI 芯片提供支撑。公司通过第四代至强处理器与 Habana Labs Gaudi 2 加速器协同方案,2024 年数据中心集团收入占比达 42%,其中 AI 产品贡献 35%。客户端计算方面,酷睿 Ultra 处理器集成独立 AI 引擎,推动 2025 年 Q1 客户端收入环比增长 18%。

    制造领域,18A 工艺良品率达 90%,20A 工艺引入背面供电降低功耗 30%;英特尔代工服务(IFS)吸引 20 家客户,2024 年收入同比增长 220%,占总营收 8%。公司计划在俄亥俄州投资千亿美元建设两座晶圆厂,2027 年投产后新增 20 万片 / 月产能,但是将继续将高达 30%的晶圆生产外包给台积电。

    供应链方面,区域化采购将关键原材料本地化比例提升至 65%,AI 预测性维护系统缩短设备停机时间 40%。技术层面,RibbonFET 与 PowerVia 技术在 18A 节点实现等效台积电 3 纳米性能,计划 2026 年 14A 工艺采用 GAA 架构,性能提升 20%、功耗降低 45%。

    财务数据显示,2024 年英特尔营收 720 亿美元(+12%),净利润 98 亿美元(+35%),2025 年资本支出维持 150 亿美元。行业趋势方面,边缘 AI 设备(2026 年市场 320 亿美元)、量子计算硬件及能效比提升成为重点。报告指出,英特尔正从技术追赶转向生态构建,预计 2027 年营收突破千亿美元,但需应对地缘政治、技术进度及竞争加剧等挑战。

  • 来源:Intel Corporation (INTC) Morgan Stanley Technology, Media & Telecom Conference (Transcript)

  • 云技术赋能半导体后道光刻流程:开启智能制造新纪元
    在半导体制造领域,Post-Tapeout Flow作为连接芯片设计与量产的关键环节,其效率与精度直接影响产品上市周期和生产成本。随着制程节点向 3 纳米及以下演进,后胶带流程面临数据量激增、计算复杂度提升和跨地域协作需求增加等挑战。最新研究表明,云技术的深度整合正在重塑这一领域的技术范式,为行业带来显著的效率提升与成本优化。

    传统Post-Tapeout Flow依赖本地高性能计算集群完成掩模数据准备(MDP)、光刻模拟(OPC)、缺陷检测(DFM)等核心任务。然而,7 纳米以下制程的掩模数据量已突破 100TB 级,单芯片 OPC 计算需消耗数万 CPU 小时,导致企业需持续投入数亿美元构建专用计算基础设施。云计算的弹性资源调度能力为解决这一问题提供了创新路径:通过将计算任务动态部署至公有云或混合云环境,企业可根据需求灵活扩展算力,使单芯片 OPC 成本降低 40% 以上。例如,台积电通过 AWS 云平台实现了全球 12 个研发中心的协同工作,将新品开发周期缩短 25%。

    云技术对Post-Tapeout Flow的革新体现在三大核心领域:其一,分布式计算架构实现跨地域资源共享。全球 TOP10 半导体厂商中,8 家已采用多云策略,将掩模数据处理任务分配至北美、欧洲和亚洲的区域云节点,显著降低数据传输延迟。其二,AI 驱动的流程优化。通过训练云端模型,可实时分析数百万次光刻模拟结果,自动优化补偿参数,使 3 纳米芯片的线宽均匀性(CDU)提升至 0.8 纳米以内。三星电子基于 Azure 云构建的 AI 缺陷检测系统,将检测效率提升 15 倍,误报率降至 0.3% 以下。其三,数字孪生技术的应用。通过在云端构建虚拟产线,可提前模拟不同工艺参数对良率的影响,将量产前的工艺调试周期从 6 个月缩短至 45 天。

    然而,云技术的深度整合仍面临多重挑战。数据安全风险尤为突出,半导体制造数据涉及敏感 IP 和工艺参数,需满足 GDPR、SOC 2 等严格合规要求。为此,行业正探索联邦学习与同态加密技术,在保证数据隐私的前提下实现跨企业协作。例如,GlobalFoundries 与 IBM 合作开发的保密计算平台,已成功实现跨云的 DFM 协同优化。此外,云原生工具链的成熟度不足也是制约因素,当前仅 63% 的后胶带工具支持容器化部署,32% 的企业面临云资源与本地系统的兼容性问题。

    技术演进趋势显示,云技术与半导体制造的融合正迈向新阶段。边缘计算与雾计算的引入,使实时工艺控制成为可能:在光刻机旁部署边缘服务器,可将反馈延迟从传统方案的 300ms 缩短至 15ms,显著提升曝光精度。量子计算的潜在应用更具颠覆性,理论上可将 OPC 计算速度提升 1000 倍以上,推动极紫外光刻(EUV)技术的大规模应用。市场调研机构 Gartner 预测,到 2027 年,全球半导体后胶带云服务市场规模将达 58 亿美元,年复合增长率(CAGR)超过 22%。

    云技术的渗透将重构半导体制造价值链。通过将Post-Tapeout Flow迁移至云端,企业可实现从资本密集型向敏捷型制造模式的转型,同时加速创新生态的形成。未来,随着 5G 专网、智能合约等技术的成熟,半导体Post-Tapeout Flow有望实现全链条的数字化、智能化与服务化,为行业应对 “后摩尔时代” 的挑战提供核心支撑。这场技术变革不仅关乎企业竞争力,更将重塑全球半导体产业的地理分布与创新格局。

  • 来源:Unlocking the cloud: A new era for post-tapeout flow for semiconductor manufacturing


二、芯片领域

  • 先进制程竞赛中的 SRAM 技术突破:Intel 与 TSMC 的战略博弈

    在半导体行业持续追求更小制程节点的技术竞赛中,静态随机存取存储器(SRAM)的设计优化成为 7 纳米以下工艺发展的关键瓶颈。

    SRAM 作为处理器缓存的核心组件,其单元面积与密度直接决定芯片集成度。随着制程向 3 纳米及以下演进,传统 FinFET 结构面临量子隧穿效应加剧、漏电率上升等物理极限。Intel 在 2024 年 IEDM 会议上发布的 RibbonFET 技术,通过将鳍式场效应晶体管(FinFET)的三维结构升级为二维纳米片,实现了 14.1 平方纳米的 SRAM 单元面积,较前代 7 纳米工艺缩小 40%。该技术结合背面供电(PowerVia)架构,通过底部金属层传输电流,消除了传统顶部金属线对器件性能的限制,使 SRAM 访问速度提升 15%,功耗降低 25%。

    与此同时,TSMC 在 2025 年国际固态电路会议(ISSCC)上展示的环绕栅极(GAA)技术,通过纳米线结构实现了 13.8 平方纳米的 SRAM 单元,成为目前全球最密集的 SRAM 设计。其创新点在于采用硅锗(SiGe)材料提升载流子迁移率,并引入动态阈值电压控制技术,使 SRAM 在 - 40℃至 125℃宽温域内保持稳定性能。TSMC 的 GAA 工艺已成功应用于 5 纳米汽车芯片,良品率达 92%,较传统 FinFET 工艺提升 18%。

    技术路线对比显示,Intel 通过 RibbonFET 与 PowerVia 的协同优化,在保持制造兼容性的同时实现了性能突破,尤其适用于高性能计算(HPC)领域对低延迟的需求。而 TSMC 的 GAA 技术更注重全制程生态的整合,其与三星合作开发的纳米线材料库,已吸引高通、联发科等客户预订 3 纳米产能。数据显示,两家公司的 SRAM 单元面积均已突破 14 平方纳米关键节点,较行业平均水平领先约 18 个月。

    然而,先进 SRAM 技术的量产面临多重挑战。Intel 的 PowerVia 技术需要重构后端金属层堆叠,导致每片晶圆成本增加 27%;TSMC 的 GAA 工艺则因纳米线对准精度要求达到亚埃级,设备投资成本较 FinFET 工艺高出 45%。市场调研机构 Gartner 预测,2026 年全球 SRAM 市场规模将达 127 亿美元,其中 70% 的需求来自 AI 加速器与高性能处理器,这将迫使芯片制造商在性能、成本与能效之间寻求新的平衡点。

    Intel 与 TSMC 的技术竞赛标志着半导体行业进入 “后摩尔时代” 的深度整合阶段。通过材料创新(如 SiGe、二维材料)与架构重构(背面供电、垂直堆叠),SRAM 设计正从单纯的尺寸微缩转向系统级优化。未来,随着台积电 3 纳米 GAA 工艺与 Intel 20A RibbonFET 技术的量产,SRAM 的能效比有望在 2027 年实现 10 倍提升,为类脑计算、量子模拟等新兴领域提供关键支撑。这场技术博弈不仅关乎企业市场份额,更将重塑全球半导体产业链的创新格局。

  • 来源: Intel, Synopsys, TSMC All Unveil Record Memory Densities

  • 欧洲 DARE 项目:迈向超级计算与 AI 数字自主的关键一步

    在数字化转型的大背景下,欧洲为降低对外国计算技术的依赖,在超级计算和人工智能领域迈出了具有重大意义的一步 —— 启动了 DARE 项目。该项目由巴塞罗那超级计算中心(BSC - CNS)牵头协调,得到了 EuroHPC 联合事业体以及西班牙科学、创新与大学部的支持,汇聚了欧洲 38 家顶尖合作伙伴。项目预算高达 2.4 亿欧元,为期三年,是一项致力于推动欧洲技术自主的重要计划。

    DARE 项目的核心目标十分明确,就是要通过采用开源的 RISC - V 架构,研发出欧洲自主设计的高性能处理器,以此为基础构建下一代超级计算机系统。这一举措将从根本上改变欧洲在超级计算领域长期依赖外国处理器和软件的局面,保障关键产业的安全,提升欧洲在全球科技竞争中的话语权。

    具体来说,DARE 项目将聚焦于三类核心芯片的研发。其一,研发向量加速器(VEC),它能够显著提升科学和工程模拟的效率,为复杂的科学计算提供强大动力;其二,开发 AI 处理单元(AIPU),专门针对自然语言处理、数据分析等 AI 驱动型应用进行优化,以满足不断增长的 AI 计算需求;其三,打造通用处理器(GPP),使其能够高效处理高性能超级计算任务,为各类计算密集型应用提供支持。这些芯片将成为未来欧洲超级计算机的核心组件,助力研究人员在药物研发、气候变化建模、可再生能源解决方案等重要领域取得突破。

    在技术路径方面,DARE 项目采用了硬件与软件协同设计的创新方法。通过将实际应用与芯片设计紧密结合,能够快速验证和优化芯片性能,确保研发出的芯片不仅在技术上领先,还能满足实际应用的需求。这种方法不仅能够加速创新进程,还能提高能源利用效率,符合当前对绿色计算的要求。

    DARE 项目的实施具有多方面的重要意义。首先,它将推动欧洲超级计算生态系统的自主发展。通过研发自主可控的处理器和计算栈,欧洲将逐步摆脱对外国技术的依赖,形成一个完整的、由欧洲主导的超级计算产业链。其次,该项目将提升欧洲在全球科技竞争中的地位。随着超级计算技术的不断发展,欧洲将在人工智能、大数据分析、量子计算等前沿领域占据更有利的位置,为经济发展和社会进步注入新的动力。此外,DARE 项目还将促进欧洲各国之间的科技合作与资源共享。38 家合作伙伴来自不同的欧洲国家,通过共同参与项目,将加强彼此之间的技术交流与协作,推动欧洲整体科技实力的提升。

    从更广泛的层面来看,DARE 项目是欧洲实现数字主权的重要战略举措。在当今全球化的环境下,数字技术已经成为国家竞争力的核心要素之一。通过自主研发超级计算技术,欧洲将能够更好地保护自身的数据安全和知识产权,应对可能出现的技术封锁和供应链风险。同时,这也将为欧洲的企业和研究机构提供更加高效、可靠的计算资源,推动创新和产业升级。

  • 来源: Europe takes a major step towards digital autonomy in supercomputing and AI with the launch of DARE project


三、人工智能领域

  • 大型语言模型推理中的过度思考现象研究,不会区分简单问题和复杂问题

    随着模型推理能力的增强,其内部逻辑链条的复杂性可能导致类似人类 “过度思考” 的决策困境。研究团队通过软件 - 工程基准测试发现,主流推理型模型(如 o1 和 DeepSeek - R1)在解决实际问题时,生成冗长内部推理步骤的频率是非推理模型的近三倍,这种现象不仅使问题解决成功率平均下降 7.9%,还导致计算成本显著增加。实验数据显示,高推理配置的 o1 模型运行成本高达 1400 美元,而低推理配置在节省 600 美元成本的情况下仍能保持相近性能。值得注意的是,参数规模较小的模型(如 QwQ - 32B)更容易陷入过度思考,而 DeepSeek - R1 671B 由于采用非强化学习训练策略,反而在减少内部推理的同时保持了较高任务成功率。研究指出,过度思考本质上是模型在不确定环境中过度依赖内部表征而非外部交互的结果,这种认知偏差可能源于训练过程中对复杂推理链的过度优化。该研究不仅为理解 LLMs 的决策机制提供了新视角,还通过开源评估框架和数据集推动行业探索更高效的推理策略,为解决 AI 系统的性能 - 成本悖论提供了重要参考。未来研究方向包括动态推理控制算法开发、跨模态交互增强以及轻量级推理架构设计,这些探索将对自动驾驶、医疗诊断等依赖实时决策的领域产生深远影响。
    这种现象带来的后果在于,AI不会像人一样基于自己的认知,对问题的复杂程度进行评价,进而基于问题的难易程度,给出不同的思考过程。

  • 来源: It’s Not Just Us: AI Models Struggle With Overthinking

  • Meta 人工智能技术在医疗行业的应用探索

    Meta 在人工智能技术应用于医疗保健领域方面取得了显著进展,这在最近的两篇博客文章中得到了强调。一个进步的领域是在人类病理学领域,Meta AI 研究人员正在利用 DINOv2 模型来构建基础模型,以增强理解和诊断。该研究强调了数据多样性而非单纯的数量在训练有效模型中的重要性。通过利用多样化的数据集,Meta AI 成功训练了一个通用的特征提取模型,该模型能够执行超过 30 项临床和诊断任务。这些任务涵盖了广泛的关键医疗需求,包括疾病检测和诊断、器官移植评估以及罕见疾病分析。该模型在这些不同的应用中始终如一的高性能,突显了 DINOv2 框架在病理学中的稳健性和多功能性。

    在另一个相关但独立的发展中,Meta AI 还专注于通过应用由 Llama 语言模型驱动的 SOFYA 来改进临床推理。这项计划旨在通过自动化若干耗时的任务来减轻医疗服务提供者的行政负担。SOFYA,利用 Llama,正被用于自动化临床环境中的数据结构化、命名实体识别和问题解答。据报道,在 SOFYA 中采用 Llama 显著节省了大型语言模型处理的成本,同时提高了准确性并增强了操作灵活性。这些进展表明,Meta AI 的技术正在为医疗保健行业的诊断精度和运营效率做出贡献,可能从而改善患者护理并简化医疗专业人员的工作流程。

    这些发展展示了 Meta AI 致力于开发和部署能够应对医疗领域关键挑战并增强能力的人工智能技术的决心。DINOv2 和 Llama 驱动的 SOFYA 的应用代表着朝着更高效、更准确的医疗保健系统迈出的重要一步。

  • 来源: Building foundation models for understanding human pathology using DINOv2

  • NextGenAI 介绍:一个通过 AI 推进研究和教育的联盟

    OpenAI 近期宣布启动 NextGenAI 联盟,旨在通过人工智能的应用,促进研究和教育领域的进步。根据其官方网站上发布的博文,这项举措标志着人工智能更深入地融入学术和研究环境迈出了重要一步。NextGenAI 联盟被定位为一项合作努力,汇集了美国和国际上的十五所顶尖研究机构。这些机构,包括著名的大学和研究中心,将共同探索和扩展人工智能在各个领域应用的前沿。

    NextGenAI 的主要目标是通过利用人工智能的能力,加速研究突破的步伐,并转变教育实践。OpenAI 承诺为该联盟提供大量资源支持,专门拨款 5000 万美元用于研究资助、计算资源以及访问其先进的人工智能 API。这项可观的投资突显了 OpenAI 致力于赋能学生、教育工作者和研究人员探索人工智能潜力的决心。联盟的结构旨在鼓励成员机构之间的合作项目以及知识和资源的共享,从而力求实现超越单个机构独立完成的进展速度。

    NextGenAI 的重点领域十分广泛,包括利用人工智能应对各个领域复杂的科研挑战,以及开发有效教授和利用人工智能技术的创新教育课程。通过构建协作生态系统,OpenAI 期望 NextGenAI 能够成为人工智能研究及其在教育领域负责任地融合的关键催化剂。该倡议反映了一项战略举措,旨在在学术研究和实际人工智能应用之间建立更强有力的桥梁,从而有可能塑造人工智能时代科学发现和教学方法的未来格局。

  • 来源: ntroducing NextGenAI: A consortium to advance research and education with AI


四、机器人领域

  • 一个用于探索土卫二的微型跳跃机器人

    NASA 创新先进概念计划(NIAC)资助的 LEAP(Legged Exploration Across the Plume)项目,旨在开发一种适应极端环境的跳跃式机器人系统,用于土星卫星恩克拉多斯的科学探测。研究团队通过对现有跳跃机器人 Salto 的技术升级,成功解决了低重力环境下的运动控制、极端温度适应和无大气条件下的推进等关键技术难题。

    恩克拉多斯作为太阳系中最具科学价值的天体之一,其南极地区存在持续喷发的冰粒羽流,包含地下海洋物质,为地外生命探测提供了绝佳样本。然而,该卫星表面覆盖着 40 公里厚的冰层,存在复杂的沟壑地形,传统轮式探测器难以跨越障碍。LEAP 系统采用仿生跳跃机制,利用土卫二 1/80 地球重力的特性,可实现单次 100 米级跳跃,显著提升探测效率。通过搭载多模态传感器和样本采集装置,LEAP 能够在跳跃过程中穿越羽流区域,获取冰粒、有机分子等关键样本。

    技术创新方面,LEAP 在继承 Salto 弹簧驱动跳跃机构的基础上,进行了三大核心改进:一是采用正交双反作用轮替代传统螺旋桨推进,实现无工质姿态控制;二是开发了颗粒冰面适应性足部结构,通过弹性缓冲设计和仿生表面纹理增强着陆稳定性;三是集成模块化热控系统,利用同位素热源与相变材料组合,确保 - 200℃环境下电子设备正常运行。实验数据显示,改进后的原型机在模拟土卫二重力环境中,跳跃高度误差控制在 ±5% 以内,姿态调整响应时间缩短至 0.3 秒。

    任务规划方面,LEAP 拟作为 “土卫二轨道着陆器”(Enceladus Orbilander)的辅助探测设备。该主任务预计 2030 年代发射,耗资 25 亿美元,包含 1.5 年轨道观测和 2 年表面原位探测。LEAP 将通过跳跃式移动,扩展主着陆器的探测范围,实现多区域羽流样本的对比分析。研究团队已完成概念验证阶段,通过 9 个月的 Phase 1 研究,重点突破了冰粒 - 机械系统交互建模、极端低温下的材料疲劳测试等关键技术。

    该项目的科学意义在于首次实现地外天体表面的动态羽流采样,为研究太阳系生命起源提供关键数据。同时,其创新的跳跃式移动技术为未来低重力天体探测提供了新范式。当前面临的技术挑战包括:长期低温环境下的机械可靠性、多跳轨迹规划算法优化,以及样本保存与分析系统的微型化。随着 2025 年 Phase 2 研究的推进,LEAP 有望在 2030 年代末成为首个登陆土卫二的跳跃机器人,开启太阳系宜居环境探测的新纪元。

  • 深圳市具身智能机器人技术创新与产业发展行动计划(2025-2027年)

    继北京之后,2025 年 3 月 3 日,深圳市发布《具身智能机器人技术创新与产业发展行动计划(2025 - 2027 年)》,旨在把握全球人工智能与机器人技术融合的机遇,打造国际领先的具身智能机器人产业集聚区。

    该计划设定了明确的发展目标,到 2027 年,深圳要在机器人关键核心零部件、AI 芯片、多模态感知技术、灵巧操作技术等方面取得突破。计划新增培育估值过百亿企业 10 家以上、营收超十亿企业 20 家以上,实现十亿级应用场景落地 50 个以上,使关联产业规模达到 1000 亿元以上,具身智能机器人产业集群相关企业超过 1200 家,让产业综合实力达到国际领先水平 。

    在核心技术攻关方面,计划重点支持多个关键领域。在核心零部件领域,要攻关高能量密度微小电机及驱动技术、高精度多模态传感器技术等;在 AI 芯片方面,研究新型 AI 芯片架构,研发适用于机器人的 AI 芯片;着力打造高性能仿生多指灵巧手,突破相关结构、材料和控制算法;构建具身智能基座及垂直领域大模型,提升机器人的交互、预测与决策能力;突破具身智能本体控制技术,实现更精准的运动控制。

    为推动产业发展,深圳还将打造公共服务平台矩阵。高标准推进重点实验室建设,支持相关实验室突破关键核心技术;高能级打造创新服务平台,突出开放开源,推动场景应用落地;高水平布局检验检测平台与中小试基地,完善评测配套工具;构建跨本体多样性开源数据集,强化具身智能模型训练支撑,同时推进标准体系建设和知识产权保护。

    此外,深圳注重培育良好的创新生态。通过提升规模化制造能力,支持企业建设制造工厂;支持首台(套)应用和爆款产品培育,推动新产品产业化;加快开放应用场景,聚焦多领域开放不少于 50 个场景;精准服务 “链主” 企业,助力龙头企业发展;支持企业出海拓展,建设核心零部件交易平台,提供海外市场服务,简化产品出口通关流程。

  • 来源: 深圳四箭齐发推进建设人工智能先锋城市

  • 空间 VLA:探索视觉-语言-动作模型中的空间表示

    提出了一种新型视觉-语言-动作(VLA)模型SpatialVLA,旨在通过探索高效的空间表征来提升通用机器人策略的3D空间理解能力。该研究由上海AI实验室等机构联合完成,核心创新在于引入了Ego3D位置编码和自适应动作网格两大关键技术,有效解决了机器人观察与动作空间的异构性难题,在跨机器人控制与适应任务中展现出显著优势。

    在方法设计上,SpatialVLA通过三个核心组件构建空间感知能力:首先,Ego3D位置编码利用ZoeDepth深度估计模型获取场景深度信息,结合相机内参将2D图像特征与3D空间位置信息融合,形成具有空间感知的视觉表征。这种基于自我中心坐标系的编码方式无需特定机器人-相机标定,实现了跨平台的通用性。其次,自适应动作网格创新性地将连续动作空间离散化为统计驱动的三维网格,通过高斯分布拟合动作数据,采用等概率区间划分策略生成动作token。这种设计不仅将每步动作的token数量从传统方法的7个减少到3个,还通过极坐标系分解实现了运动方向与距离的解耦,显著提升了动作生成的效率和精度。最后,模型采用两阶段训练框架:预训练阶段在包含110万真实机器人演示数据的混合数据集上进行,涵盖OXE和RH20T等多样化任务;后训练阶段通过动作网格重离散化和空间嵌入适配技术,快速适应新机器人配置。

    实验验证表明,SpatialVLA在多个维度展现出卓越性能。在零样本控制任务中,模型在SimplerEnv模拟环境中以71.9%的视觉匹配准确率超越RT-2-X(60.7%),在真实WidowX机器人平台上实现34.4%的平均成功率,显著优于OpenVLA等基线模型。面对新机器人配置的适应任务,模型在LIBERO仿真基准测试中获得78.1%的平均成功率,在Franka机器人多任务场景中达到57%的准确率,较传统扩散策略提升35个百分点。在空间理解专项测试中,模型对复杂空间提示的响应准确率达73%,在涉及物体高度变化和布局调整的任务中成功率提升超过40%,验证了3D空间表征的有效性。消融实验进一步证实,移除Ego3D编码会导致视觉匹配准确率下降12.7%,而传统线性离散化动作空间会使变体聚合性能降低36.5%。

  • 来源: SpatialVLA: Exploring Spatial Representations for Visual-Language-Action Model


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

demaker

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值