二、Snapman多人协作电子表格之——软件下载安装与配置

Snapman多人协作电子表格是一个即时工作系统。

一、软件下载地址

Snapman下载的官网地址:http://www.snapman.xyz

由于正在备案,新网址为:http://www.snapman.xyz:8080

在官网下载Snapman主程序安装: snapman_setup64_cn_v1.3.5.exe

有些机器软件启动出现异常还需要安装VC2017运行时:vc_redist.x64.exe

如果需要使用其中的远程桌面功能还需要安装.net framework 4.0:dotNetFx40_Full_x86_x64.exe

二、软件支持操作系统平台

只支持windows64位系统,版本是:win7、win8、win10

最低硬件要求:

  CPU: P4 以上
  内存: 1G以上
  硬盘: 10G以上

三、Snapman安装过程

1、双击下载下来的安装文件:snapman_setup64_cn_v1.3.5.exe

2、选择安装目录 ,点击下一步:

 

3、选择是否创建开始菜单,然后点击下一步:

 

4、选择是否创建桌面快捷方式,然后点击下一步:

 

5、点击Install安装程序:

 

6、等待安装完,点击Finish完成安装:

注意:由于Snapman程序需要管理员权限,win10系统点击Finish后程序启动会出现权限不足的异常(如下图),没关系点击关闭就可以不影响软件试用。

软件安装完成在开始菜单下有了下图的快捷方式:

如果启动Snapman出现异常,请安装上面说的2个运行环境:vc_redist.x64.exedotNetFx40_Full_x86_x64.exe

四、软件的服务端配置

 服务端有四个配置:服务的IP与端口配置、服务的系统目录配置、用户管理配置、脚本权限配置

1、服务端IP与端口配置

      在Snapman软件安装目录下找到文件ServerConfig.json(一般在:C:\Program Files (x86)\Snapman),如下图:

      

      用记事本打开ServerConfig.json文件,修改监听的IP地址和端口:

      

 

      注:如果IP地址为:"",则默认监听机器所有IP地址;

      配置完成后保存,重启SnapmanServer服务;则客户端可以填写IP和端口进行登录了,如下图:

      

2、服务的系统目录配置

A、工作目录配置

       用记事本打开软件安装目录下的ServerConfig.json文件,修改工作目录,包括附件存放目录和文件存放目录:

       

       注:a、附件存放目录为空则默认为安装目录的AttachmentRoot文件夹下 
              b、文件存放目录为空则默认为安装目录的Root文件夹下

      

B、是否允许客户端命令行启用配置(非必须)

       如下设置为true时,则允许客户端使用命令行执行,否则不允许

      

3、用户管理配置

      添加删除用户还有用户密码只能在服务端手工配置,在Snapman软件安装目录下找到UserConfig.json文件:

        

      用记事本打开UserConfig.json文件,添加或删除用户,如下图:

       

       修改后直接保存文件,不需要重启服务,修改就已经生效。 

4、脚本权限配置

      由于脚本功能太强大为了安全设置了脚本权限控制,在Snapman软件安装目录下找到ScriptConfig.json文件,用记事本打开:

      

      有8个配置项:ExprtkEnable为是否打开Exprtk脚本功能、TCCEnable为是否打开TCC脚本功能、PythonEnable为是否打开python脚本功能、TemplateEnable为打开分布式模板功能;

      后面的Exprtk、TCC、Python、Template为每个功能的人员开权限,true就有权限,false就没有权限

      注:Exprtk如果不设置此人权限为false,那么就他就有Exprtk脚本权限;其他都TCC、Python、Template如果不设置人员权限为true,则他没有此功能权限

      特别说明:上面所有配置文件遵循JSON文件格式规范,请严格按照规范格式配置。JSON格式说明请参考:http://www.json.org/

五、软件使用

 上面配置完成,可以正常使用软件了,先启动SnapmanServer.exe,然后启动Snapman按照刚才的配置输入IP、端口、用户和密码成功登录后就可以正常使用系统了。

服务端和客户端并不一定需要在同一台机器上,可以跨网络使用,所以可以找个空闲机器部署服务端就可以服务大家一起使用了

 

 

 

     

 

相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
<p> 欢迎参加英特尔® OpenVINO™工具套件初级课程 !本课程面向零基础学员,将从AI的基本概念开始,介绍人工智能与视觉应用的相关知识,并且帮助您快速理解英特尔® OpenVINO™工具套件的基本概念以及应用场景。整个课程包含了视频的处理,深度学习的相关知识,人工智能应用的推理加速,以及英特尔® OpenVINO™工具套件的Demo演示。通过本课程的学习,将帮助您快速上手计算机视觉的基本知识和英特尔® OpenVINO™ 工具套件的相关概念。 </p> <p> 为保证您顺利收听课程参与测试获取证书,还请您于<strong>电脑端</strong>进行课程收听学习! </p> <p> 为了便于您更好的学习本次课程,推荐您免费<strong>下载英特尔® OpenVINO™工具套件</strong>,下载地址:https://t.csdnimg.cn/yOf5 </p> <p> 收听课程并完成章节测试,可获得本课程<strong>专属定制证书</strong>,还可参与<strong>福利抽奖</strong>,活动详情:https://bss.csdn.net/m/topic/intel_openvino </p> <p> 8月1日-9月30日,学习完成【初级课程】的小伙伴,可以<span style="color:#FF0000;"><strong>免费学习【中级课程】</strong></span>,中级课程免费学习优惠券将在学完初级课程后的7个工作日内发送至您的账户,您可以在:<a href="https://i.csdn.net/#/wallet/coupon">https://i.csdn.net/#/wallet/coupon</a>查询优惠券情况,请大家报名初级课程后尽快学习哦~ </p> <p> <span style="font-size:12px;">请注意:点击报名即表示您确认您已年满18周岁,并且同意CSDN基于商务需求收集并使用您的个人信息,用于注册OpenVINO™工具套件及其课程。CSDN和英特尔会为您定制最新的科学技术和行业信息,将通过邮件或者短信的形式推送给您,您也可以随时取消订阅不再从CSDN或Intel接收此类信息。 查看更多详细信息请点击CSDN“<a href="https://passport.csdn.net/service">用户服务协议</a>”,英特尔“<a href="https://www.intel.cn/content/www/cn/zh/privacy/intel-privacy-notice.html?_ga=2.83783126.1562103805.1560759984-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">隐私声明</a>”和“<a href="https://www.intel.cn/content/www/cn/zh/legal/terms-of-use.html?_ga=2.84823001.1188745750.1560759986-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">使用条款</a>”。</span> </p> <p> <br /> </p>
<p> 课程演示环境:<span>Ubuntu</span> </p> <p> <span> </span> </p> <p> 需要学习<span>Windows</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算等设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Ubuntu</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计<span>(mAP</span>计算和画出<span>PR</span>曲线<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <br /> </p> <p> <br /> </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007061437441198.jpg" /> </p> <img alt="" src="https://img-bss.csdnimg.cn/202007061438066851.jpg" />
<p> 课程演示环境:Windows10  </p> <p> 需要学习<span>Ubuntus</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Windows10</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计<span>(mAP</span>计算<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <span> <img alt="" src="https://img-bss.csdnimg.cn/202007061503586145.jpg" /></span> </p> <p> <span><img alt="" src="https://img-bss.csdnimg.cn/202007061504169339.jpg" /><br /> </span> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页