小项目(逻辑回归)--信用卡数据异常检测

该博客介绍了一个使用逻辑回归进行信用卡数据异常检测的小项目。内容涉及数据集的特性,如Amount列的数值标准化,样本分布的不均衡问题,提出了解决方案包括下采样和过采样。此外,还讨论了交叉验证、模型评估,特别是关注召回率,并推荐使用过采样来平衡数据集。
摘要由CSDN通过智能技术生成

数据下载:creditcard.csv

1.数据集

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('creditcard.csv')
print(data.head(n=5))
countClasses = pd.value_counts(data['Class'],sort=True).sort_index() #计算class列中不同属性的数据的个数
countClasses.plot(kind='bar') #简单的pandas也可以画图
plt.show()

在这里插入图片描述
在这里插入图片描述
2.发现Amount这一列数值比较大,在机器学习中特征的重要性偏爱数值比较大的特征,解决办法可以标准化

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler #sklearn数据预处理模块

data = pd.read_csv('creditcard.csv')
dataMatrix = np.mat(data) #将数据变换成矩阵形式

X = dataMatrix[:,:-1] #数据集
y = dataMatrix[:,-1] #标签
scaler = StandardScaler().fit(X) #StandardScaler()这个小括号一定不能忘记,#标准化:(x-mean)/std
dataStand = scaler.transform(X)
print(dataStand[:5,:])

在这里插入图片描述

3.发现样本分布非常不均衡
解决方案:下采样(将多的样本随机选取和少样本一样的数目),过采样(将少样本数目增加到多样本数目)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler #sklearn数据预处理模块

data = pd.read_csv('creditcard.csv')
dataMatrix = np.mat(data)

X = dataMatrix[:,:-1]
y = dataMatrix[:,-1]
#print(len(y)) #284807
scaler = StandardScaler().fit(X) #标准化ÿ
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值