从零开始学昇腾Ascend C算子开发-第三篇:算子开发基础

3.1 算子开发流程

3.1.1 算子需求分析

注:运行前看好自己的版本:
在这里插入图片描述

明确算子功能

开发算子之前,先得搞清楚这个算子要干什么。比如要做一个Add算子,那就是两个输入相加得到输出。听起来简单,但实际要考虑的东西还挺多。

输入输出规格:输入有几个?输出有几个?每个输入输出的形状是什么?数据类型是什么?这些都要明确。

边界情况:空输入怎么处理?形状不匹配怎么办?数值溢出怎么处理?这些边界情况都要考虑。

性能要求:这个算子对性能有什么要求?是追求极致性能,还是够用就行?这会影响你的实现方案。

分析计算特点

不同的算子有不同的计算特点,分析清楚才能选对实现方法。

计算密集还是内存密集:如果计算很复杂,那要优化计算部分。如果主要是内存访问,那要优化内存访问模式。

数据依赖:计算之间有没有依赖关系?能不能并行?能不能向量化?

数据重用:中间结果能不能重用?能不能减少重复计算?

3.1.2 算子设计思路

确定实现方案

根据算子特点,确定实现方案。

简单算子:像Add、Mul这种元素级算子,直接用向量化API就行,实现起来比较简单。

复杂算子:像卷积、矩阵乘法这种,可能需要分块(Tiling),需要仔细设计数据流和计算流。

特殊算子:有些算子可能需要特殊的优化技巧,比如算子融合、内存复用这些。

设计数据流

数据流设计很重要,直接影响性能。

数据加载策略:一次加载多少数据?什么时候加载?是提前加载还是按需加载?

计算顺序:先算哪部分?后算哪部分?能不能流水线化?

结果写回策略:什么时候写回结果?是算完一块写一块,还是算完所有再写?

3.1.3 算子实现步骤

第一步:创建工程

在ModelArts Notebook里,先创建工程目录结构:

# 创建工程目录
mkdir my_operator
cd my_operator

# 创建源代码目录
mkdir src include

工程结构大概这样:

  • src/:放核函数代码
  • include/:放头文件
  • build.sh:编译脚本
  • CMakeLists.txt:CMake配置文件(如果用CMake的话)
第二步:编写核函数

src/目录下创建核函数文件,比如add_kernel.cpp

// 概念性示例
#include "ascendc.h"

extern "C" __global__ __aicore__ void AddKernel(
    GlobalTensor<float> input1,
    GlobalTensor<float> input2,
    GlobalTensor<float> output,
    int32_t total_length
) {
    // 1. 分配LocalTensor
    LocalTensor<float> local_input1;
    LocalTensor<float> local_input2;
    LocalTensor<float> local_output;
    
    local_input1.Alloc(total_length);
    local_input2.Alloc(total_length);
    local_output.Alloc(total_length);
    
    // 2. 数据加载
    DataCopy(local_input1, input1, total_length);
    DataCopy(local_input2, input2, total_length);
    
    // 3. 计算
    Add(local_output, local_input1, local_input2);
    
    // 4. 结果写回
    DataCopy(output, local_output, total_length);
    
    // 5. 释放内存
    local_input1.Free();
    local_input2.Free();
    local_output.Free();
}

这只是个概念性示例,实际的API调用会更复杂一些。

第三步:实现Tiling函数

如果算子需要分块处理,还要实现Tiling函数。Tiling函数在Host端运行,计算每个块的大小和偏移。

// 概念性示例
void TilingFunc(TilingData* tiling) {
    // 计算每个块的大小
    int32_t block_size = 256;
    int32_t total_blocks = (total_length + block_size - 1) / block_size;
    
    tiling->block_size = block_size;
    tiling->total_blocks = total_blocks;
}
第四步:注册算子

在Host端注册算子,让框架知道有这个算子:

// 概念性示例
void RegisterOperator() {
    // 注册算子原型
    RegisterOp("Add", AddKernel, TilingFunc);
}

3.1.4 算子测试验证

CPU侧调试

Ascend C支持CPU侧调试,可以在CPU上模拟NPU的行为,方便调试。

# 概念性命令
# 在CPU模式下运行算子
cpu_run_kernel AddKernel input1 input2 output

CPU侧调试的好处是速度快,不需要NPU硬件,但只能验证逻辑正确性,不能验证性能。

NPU侧验证

逻辑没问题后,要在NPU上实际跑一下,验证性能和正确性。

# 概念性命令
# 在NPU上运行算子
npu_run_kernel AddKernel input1 input2 output

NPU侧验证能看到真实的性能,也能发现一些CPU侧发现不了的问题。

结果验证

验证结果是否正确:

功能正确性:输出结果对不对?可以用参考实现(比如NumPy)对比一下。

边界情况:空输入、异常输入这些边界情况都测试一下。

性能指标:算子的执行时间、内存使用、NPU利用率这些指标都要看看。


3.2 向量化编程

3.2.1 向量化指令集

什么是向量化指令

向量化指令就是一条指令同时处理多个数据的指令。比如Add指令,可以同时把两个向量的所有元素加起来,而不是循环一个一个加。

Ascend C提供了丰富的向量化指令,覆盖了大部分常见的运算。

向量加载和存储指令

Load指令:从LocalTensor加载数据到向量。

// 概念性示例
Vector<float, 256> vec;
vec.Load(local_tensor, offset);  // 从local_tensor的offset位置加载256个元素

Store指令:把向量数据存回LocalTensor。

// 概念性示例
Vector<float, 256> vec;
// ... 对vec进行计算 ...
vec.Store(local_tensor, offset);  // 存回local_tensor的offset位置
向量运算指令

向量运算指令有很多,常用的有:

算术运算:Add、Sub、Mul、Div,这些是基础的加减乘除。

数学函数:Exp、Ln、Sqrt、Abs,这些是数学函数。

比较运算:Max、Min,找最大值最小值。

融合指令:FusedMulAdd,乘加融合,一条指令完成乘法和加法,性能更好。

3.2.2 向量加载和存储

加载策略

数据加载有几种策略:

顺序加载:按顺序一块一块地加载,简单直接。

预取加载:提前加载下一块数据,让加载和计算重叠。

批量加载:一次加载多块数据,减少加载次数。

选择哪种策略要看具体情况,通常预取加载效果比较好。

存储策略

存储也有策略:

立即存储:算完一块就存一块,简单但可能影响流水线。

延迟存储:算完所有再统一存储,可能更高效。

批量存储:一次存储多块数据。

对齐要求

加载和存储都要注意对齐。数据不对齐的话,可能要多访问一次内存,或者访问跨缓存行,都很慢。

// 概念性示例
// 确保offset是向量长度的倍数
int32_t aligned_offset = (offset + vector_length - 1) / vector_length * vector_length;
vec.Load(local_tensor, aligned_offset);

3.2.3 向量运算操作

元素级运算

元素级运算就是对向量的每个元素分别做运算:

// 概念性示例
Vector<float, 256> a, b, c;

// 向量加法:c[i] = a[i] + b[i]
Add(c, a, b);

// 向量乘法:c[i] = a[i] * b[i]
Mul(c, a, b);

// 向量最大值:c[i] = max(a[i], b[i])
Max(c, a, b);
标量运算

标量和向量的运算:

// 概念性示例
Vector<float, 256> vec;
Scalar<float> s = 3.14;

// 向量加标量:vec[i] = vec[i] + s
Adds(vec, vec, s);

// 向量乘标量:vec[i] = vec[i] * s
Muls(vec, vec, s);
归约运算

归约运算就是把向量的所有元素归约成一个值:

// 概念性示例
Vector<float, 256> vec;
Scalar<float> sum;

// 求和
ReduceSum(sum, vec);

// 求最大值
ReduceMax(max_val, vec);

3.2.4 向量化优化技巧

循环向量化

把标量循环改成向量化循环:

// 标量版本(慢)
for (int i = 0; i < n; i++) {
    c[i] = a[i] + b[i];
}

// 向量化版本(快)
for (int i = 0; i < n; i += vector_length) {
    Vector<float, 256> va, vb, vc;
    va.Load(a, i);
    vb.Load(b, i);
    Add(vc, va, vb);
    vc.Store(c, i);
}
数据重用

如果数据要用多次,尽量在向量里多待一会儿:

// 概念性示例
Vector<float, 256> vec;
vec.Load(local_tensor, offset);

// 用vec做多个运算
Add(result1, vec, vec);
Mul(result2, vec, vec);
// vec不用重复加载
融合操作

尽量用融合指令,减少指令数:

// 分开写(两条指令)
Mul(temp, a, b);
Add(c, temp, c);

// 融合指令(一条指令,更快)
FusedMulAdd(c, a, b, c);  // c = a * b + c

3.3 并行计算

3.3.1 多核并行计算

并行执行模型

昇腾处理器有多个AI Core,可以并行执行。每个Core执行同一个核函数,但处理不同的数据块。

// 概念性示例
// 核函数会被多个Core并行执行
// 每个Core处理不同的数据块
extern "C" __global__ __aicore__ void MyKernel(...) {
    // 获取当前Core的ID
    int32_t core_id = GetCoreId();
    
    // 根据Core ID计算要处理的数据范围
    int32_t start = core_id * block_size;
    int32_t end = start + block_size;
    
    // 处理这个范围的数据
    ProcessBlock(start, end);
}
数据分块策略

数据怎么分块很重要:

均匀分块:每个Core处理相同大小的块,简单但可能不够灵活。

负载均衡:根据数据特点,让每个Core的负载尽量均衡。

边界处理:分块的时候要注意边界,确保所有数据都被处理,不重复不遗漏。

3.3.2 数据并行和任务并行

数据并行(Data Parallelism)

数据并行就是不同的Core处理不同的数据:

// 概念性示例
// 每个Core处理不同的数据块
void ProcessData() {
    int32_t core_id = GetCoreId();
    int32_t total_cores = GetTotalCores();
    
    // 计算这个Core要处理的数据范围
    int32_t block_size = total_data / total_cores;
    int32_t start = core_id * block_size;
    int32_t end = (core_id == total_cores - 1) ? total_data : start + block_size;
    
    // 处理这个范围
    for (int i = start; i < end; i++) {
        ProcessElement(i);
    }
}

数据并行适合数据之间没有依赖的情况,比如元素级算子。

任务并行(Task Parallelism)

任务并行就是不同的Core执行不同的任务:

// 概念性示例
// 不同的Core执行不同的任务阶段
void ProcessPipeline() {
    int32_t core_id = GetCoreId();
    
    if (core_id == 0) {
        // Core 0负责数据加载
        LoadData();
    } else if (core_id == 1) {
        // Core 1负责计算
        Compute();
    } else if (core_id == 2) {
        // Core 2负责结果写回
        WriteBack();
    }
}

任务并行适合流水线场景,但实现起来复杂一些。

3.3.3 线程同步机制

为什么需要同步

多个Core并行执行的时候,有时候需要同步。比如一个Core要等另一个Core的结果,或者多个Core要协调访问共享资源。

同步原语

Ascend C提供了同步原语:

Barrier(屏障):等待所有Core都到达这个点,再继续执行。

// 概念性示例
void SynchronizedProcess() {
    // 每个Core执行自己的计算
    DoLocalCompute();
    
    // 等待所有Core完成
    Barrier();
    
    // 所有Core都完成后,继续执行
    DoGlobalCompute();
}

原子操作:对共享变量进行原子操作,避免竞争。

// 概念性示例
// 原子加法
AtomicAdd(shared_counter, value);

3.3.4 负载均衡

负载不均衡的问题

如果负载不均衡,有些Core很忙,有些Core很闲,整体性能就上不去。比如数据分块不均匀,或者不同块的计算复杂度不同。

负载均衡策略

动态分配:根据Core的负载情况,动态分配任务。负载轻的Core多分点任务。

工作窃取:空闲的Core可以从忙碌的Core那里"偷"一些任务来做。

自适应分块:根据数据特点,动态调整分块大小,让每个Core的负载尽量均衡。

性能监控

监控每个Core的负载情况,找出瓶颈:

// 概念性示例
void MonitorLoad() {
    int32_t core_id = GetCoreId();
    int32_t start_time = GetTime();
    
    // 执行计算
    DoCompute();
    
    int32_t end_time = GetTime();
    int32_t duration = end_time - start_time;
    
    // 记录每个Core的执行时间
    LogCoreTime(core_id, duration);
}

根据监控结果,调整分块策略,优化负载均衡。


学习检查点

学完这一篇,你应该能做到这些:

理解算子开发的完整流程,从需求分析到测试验证。掌握向量化编程,知道怎么用向量指令,怎么优化向量化代码。理解并行计算,知道数据并行和任务并行的区别,知道怎么同步和负载均衡。能够实现一个简单的算子,比如Add或Mul,完成从编写到测试的全流程。

实践练习

实现Add算子:在ModelArts Notebook中创建一个工程,实现一个Add算子。两个输入相加得到输出,用向量化API实现。完成编译、部署、测试的全流程。

向量化优化:实现一个向量加法的算子,先用标量循环实现,再改成向量化实现,对比性能差异。理解向量化的优势。

并行计算实验:实现一个需要多Core并行的算子,比如大矩阵的加法。理解数据分块、Core同步这些概念。

性能调优:对一个算子进行性能调优,比如调整分块大小、优化内存访问、使用融合指令等,看看性能能提升多少。


下一步:掌握了算子开发的基础后,就可以学习常用算子的实现了。下一章会讲各种常见算子的实现方法,比如元素级算子、规约算子、矩阵运算算子等,到时候你就能实现更复杂的算子了。

2025年昇腾CANN训练营第二季,基于CANN开源开放全场景,推出0基础入门系列、码力全开特辑、开发者案例等专题课程,助力不同阶段开发者快速提升算子开发技能。获得Ascend C算子中级认证,即可领取精美证书,完成社区任务更有机会赢取华为手机,平板、开发板等大奖。

报名链接:https://www.hiascend.com/developer/activities/cann20252

社区地址:https://www.hiascend.com/developer

### Ascend C算子使用方法及API文档 #### 升腾C算子概述 升腾C(Ascend C)提供了一套完整的工具链来支持开发者创建高效的AI应用程序。对于自定义算子开发而言,掌握特定的API及其工作原理至关重要[^2]。 #### 主要API介绍 - **AllocTensor**:用于分配张量对象,在指定设备上的内存空间中预留位置以便后续操作。 - **DataCopy**:负责处理不同存储区域间的数据传输任务;能够有效地将源地址处的信息复制到目标地址。 - **EnQue**:把准备好的本地张量加入队列等待进一步处理或计算资源调度。 下面给出一段简化版的例子展示如何利用上述提到的功能构建一个简单的输入过程: ```cpp __aicore__ inline void CopyIn(int32_t progress, uint32_t length) { LocalTensor<DTYPE_X> xLocal = inQueueX.AllocTensor<DTYPE_X>(); // 分配局部张量 DataCopy(xLocal, xGm[progress * this->tileLength], length); // 数据拷贝至局部张量 inQueueX.EnQue(xLocal); // 将局部张量放入队列 } ``` 这段代码片段展示了怎样通过`inQueueX`这个队列管理器实例化并初始化一个新的局部张量(`xLocal`),接着从全局内存(`xGm`)读取数据填充该张量最后将其推送到队列里供其他组件访问[^3]。 #### 自定义算子实现案例-SinhCustom 针对具体的数运算如双曲正弦函数(Sinh),可以通过组合基本的操作符和库函数来达成目的。这里给出了关于`SinhCustom`算子的一个简单设计思路: 1. 定义核函数(Kernel-side Code): 这部分涉及到实际数值计算逻辑,通常是在GPU或其他加速硬件上运行。 ```cpp extern "C" __global__ void SinhKernel(const float* input, float* output, size_t n) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < n){ double ex = exp(input[idx]); double emx = exp(-input[idx]); output[idx] = static_cast<float>((ex - emx)/2.); } } ``` 2. 编写主机端接口(Host-side Code): 提供给用户调用的方式,同时也承担着参数传递、错误检测等工作。 ```cpp AclLiteError ExecuteSinhCustom(AclLiteContext& context, const std::vector<void*>& inputs, std::vector<void*>& outputs) { // ... 设置启动配置 ... dim3 block_size(BLOCK_SIZE); dim3 grid_size((num_elements + BLOCK_SIZE - 1) / BLOCK_SIZE); SinhKernel<<<grid_size, block_size>>>(static_cast<const float*>(inputs[0]), static_cast<float*>(outputs[0]), num_elements); cudaDeviceSynchronize(); return ACLLITE_OK; } ``` 3. 测试与验证: 利用预置的数据集对新编写的算子进行全面检验以确保其正确性和性能表现良好。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红目香薰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值