题目链接
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
题意:给定n个数构建完全二叉树,输出完全二叉树的层序遍历
思路:二叉树的中序遍历建树即为输出
代码:
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i=a;i<n;i++)
#define drep(i,n,a) for(int i=n;i>=a;i--)
#define mem(a,n) memset(a,n,sizeof(a))
#define lowbit(i) ((i)&(-i))
typedef long long ll;
typedef unsigned long long ull;
const ll INF=0x3f3f3f3f;
const double eps = 1e-6;
const int N = 1e5+5;
int res[N],a[N];
int n,id=0;
void inOrder(int root) {
if(root>=n) return ;
inOrder(2*root+1);
res[root]=a[id++];
inOrder(2*root+2);
}
int main() {
cin>>n;
for(int i=0; i<n; i++) {
cin>>a[i];
}
sort(a,a+n);
inOrder(0);
for(int i=0; i<n; i++) {
if(i) cout<<" ";
cout<<res[i];
}
return 0;
}