Presto查询慢SQL原因排查

博客讨论了一次线上Hive查询的性能问题,该查询耗时约5秒,涉及297万行数据。通过explain分析,发现CPU使用率高且全表扫描。在Presto的Dashboard中,确认了输入数据量和CPU时间。问题在于数据每日全量更新但未按日分片,导致效率低下。解决方案可能包括表分区优化和查询策略调整。
摘要由CSDN通过智能技术生成

线上有一个很简单的查询语句,近似如下:

select time,name,add_u,active_u,avgtime,…… 
from app.content_day where pid = '-1' and pid_sid = 'all' and os_type  = 'all' and time between '2022-07-23' and '2022-07-23'
order by add_user desc limit 50

只查一张表,底层是HIVE表,但是耗时需要5秒左右。

首先想到是explain看下执行过程:

- Output[time,……] - TopN[50 by (add_user DESC_NULLS_LAST)] => [add_user:integer,……] - LocalExchange[SINGLE] () => [……] - RemoteStreamingExchange[GATHER] => [……] - TopNPartial[50 by (add_user DESC_NULLS_LAST)] => [……] - ScanFilterProject[table = TableHandle {connectorId='hive', connectorHandle='HiveTableHandle{schemaName=app, tableName=content_day, analyzePartitionValues=Optional.empty}', layout='Optional[app.content_day{domains={pid=[ [[-1]] ], pid_sid=[ [[all]] ], time=[ [[2022-07-23]] ], os_type=[ [[all]] ]}}]'}, filterPredicate = (((os_type) = (VARCHAR all)) AND ((pid) = (VARCHAR -1))) AND (((pid_sid) = (VARCHAR all)) AND ((time) = (VARCHAR 2022-07-23)))] => [……] Estimates: {rows: 148346 (19.59MB), cpu: 30036647.00, memory: 0.00, network: 0.00}/{rows: 85 (11.45kB), cpu: 60073294.00, memory: 0.00, network: 0.00}/{rows: 85 (11.45kB), cpu: 60085014.38, memory: 0.00, network: 0.00} LAYOUT: app.content_day{domains={……:int:8:REGULAR

 直观看到cpu这个数值特别大,rows14万行,似乎还可以,很难得出结论。

还有另外一个分析执行计划命令,会更加详细。

EXPLAIN ANALYZE + SQL

Fragment 1 [SINGLE] CPU: 1.54ms, Scheduled: 1.77ms, Input: 50 rows (4.33kB); per task: avg.: 50.00 std.dev.: 0.00, Output: 50 rows (4.33kB) Output layout: [……] Output partitioning: SINGLE [] Stage Execution Strategy: UNGROUPED_EXECUTION - TopN[50 by (add_user DESC_NULLS_LAST)] => [……r] CPU: 0.00ns (0.00%), Scheduled: 0.00ns (0.00%), Output: 50 rows (4.33kB) Input avg.: 50.00 rows, Input std.dev.: 0.00% - LocalExchange[SINGLE] () => [……] CPU: 0.00ns (0.00%), Scheduled: 0.00ns (0.00%), Output: 50 rows (4.33kB) Input avg.: 3.13 rows, Input std.dev.: 387.30% - RemoteSource[2] => [……] CPU: 0.00ns (0.00%), Scheduled: 0.00ns (0.00%), Output: 50 rows (4.33kB) Input avg.: 3.13 rows, Input std.dev.: 387.30%

Fragment 2 [SOURCE] CPU: 4.68s, Scheduled: 5.09s, Input: 2973242 rows (105.38MB); per task: avg.: 1342041.50 std.dev.: 1342041.50, Output: 50 rows (4.33kB) Output layout: [……] Output partitioning: SINGLE [] Stage Execution Strategy: UNGROUPED_EXECUTION - TopNPartial[50 by (add_user DESC_NULLS_LAST)] => [……] CPU: 9.00ms (0.19%), Scheduled: 9.00ms (0.16%), Output: 50 rows (4.33kB) Input avg.: 314.00 rows, Input std.dev.: 100.00% - ScanFilterProject[table = TableHandle {connectorId='hive', connectorHandle='HiveTableHandle{schemaName=app, tableName=map_day, analyzePartitionValues=Optional.empty}', layout='Optional[app...domains={pid=[ [[-1]] ], pid_sid=[ [[all]] ], time=[ [[2022-07-23]] ], os_type=[ [[all]] ]}}]'}, grouped = false, filterPredicate = (((os_type) = (VARCHAR all)) AND ((pid) = (VARCHAR -1))) AND (((pid_sid) = (VARCHAR all)) AND ((time) = (VARCHAR 2022-07-23)))] => [……] CPU: 4.67s (99.81%), Scheduled: 5.52s (99.84%), Output: 628 rows (53.55kB) Input avg.: 1483350 rows, Input std.dev.: 100.00% LAYOUT: ……REGULAR Input: 2684083 rows (107.24MB), Filtered: 99.98%

基本可以坐实一件事儿,这个慢SQL需要扫描297万行数据。

进入Presto的Dashboard,也能看到一些具体信息:

SQL执行时出现明显的峰值

 点开查询执行的详细信息发现输入行数也是2.97百万。

Resource Utilization Summary
CPU Time    4.73s
Scheduled Time    5.10s
Blocked Time    1.45m
Input Rows    2.97M
Input Data    107.24MB
Raw Input Rows    2.97M
Raw Input Data    25.52MB
Peak User Memory    0B
Peak Total Memory    2.93MB
Memory Pool    general
Cumulative User Memory    0 seconds
Output Rows    50.0
Output Data    4.33kB
Written Output Rows    0.00
Written Output Logical Data Size    0B
Written Output Physical Data Size    0B
Timeline
Parallelism    
0.89
Scheduled Time/s    
0.96
Input Rows/s    
506K

Input Bytes/s    
20.2MB
Memory Utilization    
0B

回到这个HIVE表本身,表中全量数据297万,问题在这些数据每日全量更新,没有按日分片,导致全表扫描。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TechingOn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值