经典网络DenseNet介绍

经典网络DenseNet(Dense Convolutional Network)由Gao Huang等人于2017年提出,论文名为:《Densely Connected Convolutional Networks》,论文见:https://arxiv.org/pdf/1608.06993.pdf

DenseNet以前馈的方式(feed-forward fashion)将每个层与其它层连接起来。在传统卷积神经网络中,对于L层的网络具有L个连接,而在DenseNet中,会有L(L+1)/2个连接。每一层的输入来自前面所有层的输出。

DenseNet网络:

(1).减轻梯度消失(vanishing-gradient)。

(2).加强feature传递。

(3).鼓励特征重用(encourage feature reuse)。

(4).较少的参数数量。

Dense Block:像GoogLeNet网络由Inception模块组成、ResNet网络由残差块(Residual Building Block)组成一样,DenseNet网络由Dense Block组成,论文截图如下所示:每个层从前面的所有层获得额外的输入,并将自己的特征映射传递到后续的所有层,使用级联(Concatenation)方式,每一层都在接受来自前几层的”集体知识(collective knowledge)”。增长率(growth rate)k是每个层的额外通道数。

Growth rate:如果每个H_{l}函数产生k个feature-maps,那么第l层产生k_{0}+k(l-1)个feature-maps。k_{0}是输入层的通道数。将超参数k称为网络的增长率。

DenseNet Basic Composition Layer:BatchNorm(BN)-ReLu-3*3 Conv

DenseNet-B(Bottleneck Layers):在BN-ReLu-3*3 Conv之前进行BN-ReLU-1*1 Conv操作,减少feature maps size。

Transition Layer(过渡层):采用1*1 Conv和2*2平均池化作为相邻Dense Block之间的转换层,减少feature map数和缩小feature map size,size指width*height。在相邻Dense Block中输出的feature map size是相同的,以便它们能够很容易的连接在一起。

DenseNet-BC:如果Dense Block包含m个feature-maps,则Transition Layer生成\theta m输出feature maps,其中0<\theta <1称为压缩因子。当\theta =1时,通过Transition Layers的feature-maps数保持不变。当\theta <1时,称为DenseNet-C,在实验中\theta =0.5。当同时使用Bottleneck和\theta <1的Transition Layers时,称为DenseNet-BC。

下图是一个DenseNet结构图,来自于论文:使用了3个Dense Blocks。DenseNet由多个Desne Block组成。每个Dense Block中的feature-map size相同。两个相邻Dense Block之间的层称为Transition Layers。通过卷积和池化来更改feature-map size。

论文中给出了4种层数的DenseNet,论文截图如下所示:所有网络的增长率k是32,表示每个Dense Block中每层输出的feature map个数。

DenseNet-121、DenseNet-169等中的数字121、169是如何计算出来的:以121为例,1个卷积(Convolution)+6个Dense Block*2个卷积(1*1、3*3)+1个Transition Layer(1*1 conv)+12个Dense Block*2个卷积(1*1、3*3)+ 1个Transition Layer(1*1 conv)+24个Dense Block*2个卷积(1*1、3*3)+ 1个Transition Layer(1*1 conv)+ 16个Dense Block*2个卷积(1*1、3*3)+最后的1个全连接层=121。这里的层仅指卷积层和全连接层,其它类型的层并没有计算在内

公式表示:其中H_{l}(\cdot )表示非线性转换函数

(1).传统的网络在l层的输出为:x_{l}=H_{l}(x_{l-1})

(2).ResNet在l层的输出为:x_{l}=H_{l}(x_{l-1})+x_{l-1}

(3).DenseNet在l层的输出为:x_{l}=H_{l}([x_{0},x_{1},\cdots ,x_{l-1}])

假如输入图像大小为n*n,过滤器(filter)为f*f,padding为p,步长(stride)为s,则输出大小为:计算卷积层大小,如果商不是整数,向下取整,即floor函数;计算池化层大小,如果商不是整数,向上取整,即ceil函数。参考:https://blog.csdn.net/fengbingchun/article/details/80262495

https://github.com/fengbingchun/Caffe_Test/tree/master/test_data/Net/DenseNet 上整理了DenseNet prototxt文件。

这里描述下DenseNet-121架构:k=32,与上表中"DenseNet-121"有所差异

(1).输入层(Input):图像大小为224*224*3。

(2).卷积层Convolution+BatchNorm+Scale+ReLU:使用64个7*7的filter,stride为2,padding为3,输出为112*112*64,64个feature maps。

(3).Pooling:最大池化,filter为3*3,stride为2,padding为1,输出为57*57*64,64个feature maps。

(4).Dense Block1:输出为57*57*(64+32*6)=57*57*256,256个feature maps。

连续6个Dense Block,每个Dense Block包含2层卷积,卷积kernel大小依次为1*1、3*3,在卷积前进行BatchNorm+Scale+ReLU操作,第1、2个卷积输出feature maps分别为128、32。因为k=32,所以每个Dense Block输出feature maps数会比上一个Dense Block多32。每个Dense Block后做Concat操作。

(5).Transition Layer1:输出为29*29*128,128个feature maps。

A.BatchNorm+Scale+ReLU+1*1 conv,输出57*57*128。

B.平均池化,filter为2*2,stride为2,输出29*29*128。

(6).Dense Block2:输出为29*29*(128+32*12)=29*29*512,512个feature maps。

连续12个Dense Block,每个Dense Block包含2层卷积,卷积kernel大小依次为1*1、3*3,在卷积前进行BatchNorm+Scale+ReLU操作,第1、2个卷积输出feature maps分别为128、32。因为k=32,所以每个Dense Block输出feature maps数会比上一个Dense Block多32。每个Dense Block后做Concat操作。

(7).Transition Layer2:输出为15*15*256,256个feature maps。

A.BatchNorm+Scale+ReLU+1*1 conv,输出29*29*256。

B.平均池化,filter为2*2,stride为2,输出15*15*256。

(8).Dense Block3:输出为15*15*(256+32*24)=15*15*1024,1024个feature maps。

连续24个Dense Block,每个Dense Block包含2层卷积,卷积kernel大小依次为1*1、3*3,在卷积前进行BatchNorm+Scale+ReLU操作,第1、2个卷积输出feature maps分别为128、32。因为k=32,所以每个Dense Block输出feature maps数会比上一个Dense Block多32。每个Dense Block后做Concat操作。

(9).Transition Layer3:输出为8*8*512,512个feature maps。

A.BatchNorm+Scale+ReLU+1*1 conv,输出15*15*512。

B.平均池化,filter为2*2,stride为2,输出8*8*512。

(10).Dense Block4:输出为8*8*(512+32*16)=8*8*1024,1024个feature maps。

连续16个Dense Block,每个Dense Block包含2层卷积,卷积kernel大小依次为1*1、3*3,在卷积前进行BatchNorm+Scale+ReLU操作,第1、2个卷积输出feature maps分别为128、32。因为k=32,所以每个Dense Block输出feature maps数会比上一个Dense Block多32。每个Dense Block后做Concat操作。

(11).Classification Layer:

A.平均池化:filter为8*8,stride为1,padding为0,输出为1*1*1024,1024个feature maps。

B.卷积:kernel大小为1*1,输出1000个feature maps。

C.输出层(Softmax):输出分类结果,看它究竟是1000个可能类别中的哪一个。

可视化结果如下图所示:

GitHubhttps://github.com/fengbingchun/NN_Test

### DenseNet121 架构详解 #### 密集连接机制 DenseNet121采用了密集连接的方式,在每一层都将当前层的输出作为后续所有层的输入之一。这种设计使得网络中的每两层之间都有直接的信息流,从而增强了特征传播,促进了特征重用,并缓解了梯度消失问题[^1]。 #### 特征图增长模式 随着层数加深,DenseNet121不断向后叠加新的特征图而不丢弃旧有的信息。具体来说,当一个新的卷积操作完成之后,得到的结果会与之前所有的特征图拼接在一起形成更大的张量供下一层处理。这样的做法有效减少了参数数量并提升了计算效率。 #### 过渡层的设计 为了控制模型宽度的增长以及减少维度带来的巨大开销,DenseNet121引入了过渡层的概念。在过渡层内部通常包含批量归一化(Batch Normalization),ReLU激活函数和$1\times1$卷积用于降维,最后再经过平均池化来缩小空间尺寸。 ```python def transition_layer(x, compression_factor=0.5): num_filters = int(K.int_shape(x)[-1]*compression_factor) x = BatchNormalization()(x) x = Activation('relu')(x) x = Conv2D(num_filters, (1, 1), padding='same', use_bias=False)(x) x = AveragePooling2D((2, 2))(x) return x ``` ### 应用场景分析 由于上述特性,DenseNet121特别适合应用于图像分类任务中,尤其是在面对小样本数据集的情况下能够取得较好的泛化能力[^2]。此外,该架构也被广泛移植到其他视觉识别领域,比如目标检测、语义分割等,均获得了优异的成绩。 ### 使用指南 对于希望基于TensorFlow框架快速搭建起一个可用版本的研究者而言,《探索深度学习新境界:DenseNet-TensorFlow详解与应用》提供了一个很好的起点[^3]。书中不仅给出了完整的源码解析,而且针对实际工程需求做了许多优化调整,例如采用AdamOptimizer替代原始SGD算法加速收敛过程;同时简化了一些外部依赖项以便更好地适应不同的开发环境。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值