
PyTorch
文章平均质量分 78
fengbingchun
这个作者很懒,什么都没留下…
展开
-
PyTorch中的学习率预热(warmup)
PyTorch中的学习率预热(warmup)原创 2024-09-14 16:42:57 · 1880 阅读 · 0 评论 -
使用PyTorch AlexNet预训练模型对新数据集进行训练及预测
使用PyTorch AlexNet预训练模型对新数据集进行训练及预测原创 2024-08-28 11:49:26 · 895 阅读 · 1 评论 -
使用libtorch加载YOLOv8生成的torchscript文件进行实例分割
使用libtorch加载YOLOv8生成的torchscript文件进行实例分割原创 2024-06-08 22:36:54 · 692 阅读 · 0 评论 -
使用libtorch加载YOLOv8生成的torchscript文件进行目标检测
使用libtorch加载YOLOv8生成的torchscript文件进行目标检测原创 2024-05-26 17:44:54 · 1977 阅读 · 7 评论 -
NeRF简介及nerf-pytorch的使用
NeRF简介及nerf-pytorch的使用原创 2023-03-18 20:02:00 · 3611 阅读 · 0 评论 -
开源深度学习模型部署工具箱MMDeploy简介及安装
开源深度学习模型部署工具箱MMDeploy简介及安装原创 2022-09-25 15:45:20 · 9278 阅读 · 0 评论 -
生成GAN模型工具箱MMGeneration安装及使用示例
生成GAN模型工具箱MMGeneration安装及使用示例原创 2022-09-11 16:12:59 · 4431 阅读 · 2 评论 -
OCR开源工具箱MMOCR安装及使用示例(英文识别)
OCR开源工具箱MMOCR安装及使用示例(英文识别)原创 2022-09-11 15:42:35 · 3417 阅读 · 5 评论 -
姿态分析开源工具箱MMPose使用示例:人体姿势估计
姿态分析开源工具箱MMPose使用示例:人体姿势估计原创 2022-09-03 14:29:45 · 1271 阅读 · 4 评论 -
姿态分析开源工具箱MMPose使用示例:2d手势估计
姿态分析开源工具箱MMPose使用示例:2d手势估计原创 2022-09-03 14:03:48 · 1336 阅读 · 2 评论 -
姿态分析开源工具箱MMPose安装及使用示例(2d face landmark detection)
姿态分析开源工具箱MMPose安装及使用示例(2d face landmark detection)原创 2022-09-03 13:21:55 · 2384 阅读 · 0 评论 -
开源图像分类工具箱MMClassification安装及使用示例
开源图像分类工具箱MMClassification安装及使用示例原创 2022-08-28 15:30:13 · 2093 阅读 · 0 评论 -
语义分割开源工具箱MMSegmentation安装及使用示例
语义分割开源工具箱MMSegmentation安装及使用示例原创 2022-08-28 15:13:56 · 2247 阅读 · 0 评论 -
图像&视频编辑工具箱MMEditing使用示例:图像生成(generation)
图像&视频编辑工具箱MMEditing使用示例:图像生成(generation)原创 2022-08-20 17:31:10 · 1163 阅读 · 1 评论 -
图像&视频编辑工具箱MMEditing使用示例:图像超分辨率(super-resolution)
图像&视频编辑工具箱MMEditing使用示例:图像超分辨率(super-resolution)原创 2022-08-20 16:33:59 · 587 阅读 · 0 评论 -
图像&视频编辑工具箱MMEditing使用示例:图像抠图(matting)
图像&视频编辑工具箱MMEditing使用示例:图像抠图(matting)原创 2022-08-14 15:44:47 · 619 阅读 · 2 评论 -
图像&视频编辑工具箱MMEditing安装及使用示例(Inpainting)
图像&视频编辑工具箱MMEditing安装及使用示例(Inpainting)原创 2022-08-14 14:57:44 · 2948 阅读 · 0 评论 -
目标检测工具箱MMDetection安装及使用示例
目标检测工具箱MMDetection安装及使用示例原创 2022-08-06 18:48:47 · 1834 阅读 · 0 评论 -
OpenMMLab简介
OpenMMLab简介原创 2022-07-31 16:48:30 · 6554 阅读 · 0 评论 -
PyTorch模型导出到ONNX文件示例(LeNet-5)
PyTorch模型导出到ONNX文件示例(LeNet-5)原创 2022-07-30 15:53:57 · 4371 阅读 · 4 评论 -
ONNX Runtime介绍
ONNX Runtime介绍原创 2022-07-23 19:54:47 · 11375 阅读 · 0 评论 -
ONNX(Open Neural Network Exchange)介绍
ONNX(Open Neural Network Exchange)介绍原创 2022-07-23 14:15:31 · 5664 阅读 · 0 评论 -
PyTorch中通过torch.save保存模型和torch.load加载模型介绍
PyTorch中通过torch.save保存模型和torch.load加载模型介绍原创 2022-07-10 15:52:44 · 17054 阅读 · 15 评论 -
通过PyTorch构建的LeNet-5网络对手写数字进行训练和识别
通过PyTorch构建的LeNet-5网络对手写数字进行训练和识别原创 2022-06-25 18:17:32 · 2370 阅读 · 0 评论 -
Windows7上安装pytorch1.11后报api-ms-win-core-path-l1-1-0.dll错误的解决方法
Windows7上安装pytorch1.11后报api-ms-win-core-path-l1-1-0.dll错误的解决方法原创 2022-06-05 17:39:29 · 14117 阅读 · 9 评论 -
损失函数之Cross-Entropy介绍及C++实现
在深度学习中,损失函数用来评估模型的预测值与真实值之间的差异程度,是模型对数据拟合程度的反映,拟合的越差,损失函数的值越大;反之,损失函数越小,说明模型的预测值就越接近真实值,模型的准确性也就越好。深度学习的模型训练的目标就是使损失函数的值尽可能小。因此损失函数又被称为目标函数。深度学习的模型训练的过程就是不断地最小化损失函数。选择适合的损失函数不仅影响最终预测的准确性,而且影响训练的效率。 常用的损失函数包括:最小均方差损失函数、L1范数损失函数、L2范数损失函数、交叉熵损失函数...原创 2022-01-27 22:02:10 · 3739 阅读 · 1 评论 -
windows上通过cmake-gui生成pytorch工程
在Windows下通过cmake-gui.exe生成不带cuda的Torch.sln工程操作步骤:PyTorch版本使用1.8.1。首先可以先通过打开cmake-gui.exe,指定pytorch源代码目录和生成vs2017工程的位置;然后点击Configure,选中”Visual Studio 15 2017 Win64”,点击Finish,会报一堆CMake Error,然后逐个解决处理,如下图所示:然后反复的点击Configure,直到Configuing done;反复的点击Genera...原创 2022-01-16 14:11:13 · 1833 阅读 · 0 评论 -
PyTorch中nn.Module类中__call__方法介绍
在PyTorch源码的torch/nn/modules/module.py文件中,有一条__call__语句和一条forward语句,如下:__call__ : Callable[…, Any] = _call_implforward: Callable[…, Any] = _forward_unimplemented 在PyTorch中nn.Module类是所有神经网络模块的基类,你的网络也应该继承这个类,需要重载__init__和forward函数。以下是仿照PyTor...原创 2022-01-05 20:18:18 · 9835 阅读 · 7 评论 -
PyTorch中nn.Module类简介
torch.nn.Module类是所有神经网络模块(modules)的基类,它的实现在torch/nn/modules/module.py中。你的模型也应该继承这个类,主要重载__init__、forward和extra_repr函数。Modules还可以包含其它Modules,从而可以将它们嵌套在树结构中。 只要在自己的类中定义了forward函数,backward函数就会利用Autograd被自动实现。只要实例化一个对象并传入对应的参数就可以自动调用forward函数。因为此时...原创 2021-12-19 13:57:53 · 6806 阅读 · 0 评论 -
TorchVision中通过AlexNet网络进行图像分类
TorchVision中给出了AlexNet的pretrained模型,模型存放位置为https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth ,可通过models.alexnet函数下载,此函数实现在torchvision/models/alexnet.py中,下载后在Ubuntu上存放在~/.cache/torch/hub/checkpoints目录下,在Windows上存放在C:\Users\spring\.cache\tor...原创 2021-11-27 16:21:26 · 2896 阅读 · 5 评论 -
TorchVision中使用FasterRCNN+ResNet50+FPN进行目标检测
TorchVision中给出了使用ResNet-50-FPN主干(backbone)构建Faster R-CNN的pretrained模型,模型存放位置为https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth,可通过fasterrcnn_resnet50_fpn函数下载,此函数实现在torchvison/models/detection/faster_rcnn.py中,下载后在Ubuntu上存放在...原创 2021-11-19 09:10:12 · 17245 阅读 · 10 评论 -
PyTorch中torchvision介绍
TorchVision包包含流行的数据集、模型架构和用于计算机视觉的图像转换,它是PyTorch项目的一部分。TorchVison最新发布版本为v0.11.1,发布较频繁,它的license为BSD-3-Clause。它的源码位于:https://github.com/pytorch/vision TorchVision由C++(CUDA)和Python3实现,依赖Torch、PNG、JPEG,还依赖PIL(Pillow, Python Imaging Library)。推荐...原创 2021-11-07 14:37:42 · 2359 阅读 · 0 评论 -
Python3中Pillow(PIL)介绍
PIL全称为Python Imaging Library,是Python中的免费开源图像处理库。PIL的最新版本为1.1.7,于2009年9月发布,支持Python的最高版本到2.7。原始的PIL开发于2011年停止。随后,一个名为Pillow的后续项目fork了PIL的repository并增加了对Python 3.x的支持。它已被采用作为Linux发行版中原始PIL的替代品。 Pillow代码在https://github.com/python-pillow/Pillow,...原创 2021-11-03 11:10:25 · 4192 阅读 · 0 评论 -
PyTorch中tensor介绍
PyTorch中的张量(Tensor)如同数组和矩阵一样,是一种特殊的数据结构。在PyTorch中,神经网络的输入、输出以及网络的参数等数据,都是使用张量来进行描述。 torch包中定义了10种具有CPU和GPU变体的tensor类型。 torch.Tensor或torch.tensor是一种包含单一数据类型元素的多维矩阵。torch.Tensor或torch.tensor注意事项: (1). torch.Tensor是默认tensor类型torch.Flo...原创 2021-10-30 20:29:19 · 3357 阅读 · 1 评论 -
激活函数之tanh介绍及C++/PyTorch实现
深度神经网络中使用的激活函数有很多种,这里介绍下tanh。它的公式如下,截图来自于维基百科(https://en.wikipedia.org/wiki/Activation_function): tanh又称双曲正切,它解决了sigmoid非零中心问题。tanh取值范围在(-1, 1)内,它也是非线性的。它也不能完全解决梯度消失问题。 C++实现如下:template<typename _Tp>int activation_function_t...原创 2021-07-29 08:53:27 · 5729 阅读 · 1 评论 -
深度神经网络中的Batch Normalization介绍及实现
之前在https://blog.csdn.net/fengbingchun/article/details/114493591中介绍DenseNet时,网络中会有BN层,即Batch Normalization,在每个Dense Block中都会有BN参与运算,下面对BN进行介绍并给出C++和PyTorch实现。 Batch Normalization即批量归一化由Sergey loffe等人于2015年提出,论文名为:《Batch Normalization: Accelerat...原创 2021-07-21 10:19:05 · 3342 阅读 · 8 评论 -
PyTorch简介
PyTorch是一个针对深度学习,并且使用GPU和CPU来优化的tensor library(张量库)。最新发布的稳定版本为1.9,源码在https://github.com/pytorch/pytorch 。它支持在Linux、Mac和Windows上编译和运行。调用Python接口可以通过Anaconda或Pip的方式安装,调用C++接口可直接下载对应的二进制库。对PyTorch比较熟悉了,也可以通过源码直接编译。PyTorch是基于以下两个目的而打造的python科学计算框架:(1). 无缝替原创 2021-06-19 19:00:20 · 6863 阅读 · 0 评论 -
对象检测工具包mmdetection简介、安装及测试代码
mmdetection是商汤和港中文大学联合开源的基于PyTorch的对象检测工具包,属于香港中文大学多媒体实验室open-mmlab项目的一部分。该工具包提供了已公开发表的多种流行的检测组件,通过这些组件的组合可以迅速搭建出各种检测框架。mmdetection主要特性:(1). 模块化设计:可以通过连接不同组件容易地构建自定义的目标检测框架;(2). 支持多个流程检测框架:如RPN,...原创 2019-01-29 17:50:33 · 18620 阅读 · 33 评论 -
以安装PyTorch为例说明Anaconda在Windows/Linux上的使用
在Windows10上配置完MXNet 1.3.0后,再配置PyTorch 1.0时,发现两者需要依赖的NumPy版本不一致,之前是通过pip安装NumPy,根据pip的版本不同,会安装不同版本的NumPy,使用起来很不方便,而且MXNet和PyTorch依赖的Python版本也可能不同,这里使用Anaconda来轻松解决以上问题。简单来说,Anaconda是包管理器和环境管理器,它可以便捷获...原创 2019-01-10 09:17:29 · 4581 阅读 · 5 评论