19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。
接下来聊聊基于期货API获取K线数据。
期货市场的 K 线数据是进行市场分析和制定交易策略的重要依据,K 线数据通常包括开盘价、收盘价、最高价、最低价和成交量等信息。获取期货的 K 线数据,可以帮助交易者分析市场的趋势,判断进出场时机。以下是通过 Python 编写的代码示例,利用期货常用的公开 API(如上海期货交易所、和讯等)获取期货 K 线数据的详细开发内容。
1. 使用和讯 API 获取期货 K 线数据
和讯提供了期货市场的 K 线数据,可以通过 HTTP 请求获取特定期货品种的历史 K 线数据。以下代码展示了如何通过 Python 调用和讯的 API 获取期货 K 线数据。
import requests
import pandas as pd
def get_hexun_futures_klines(futures_code, limit=100):
"""
获取和讯期货的 K 线数据。
:param futures_code: 期货代码,例如 'AU0' 表示沪金连续合约
:param limit: 获取 K 线数据的数量
:return: K 线数据的 pandas DataFrame
"""
url = f"https://api.hexun.com/futures/kline"
params = {
"code": futures_code,
"type": "day", # 'day' 表示日 K 线,可以修改为 'week' 或 'month'
"count": limit
}
response = requests.get(url, params=params)
if response.status_code == 200:
data = response.json()
kline_data = data.get("data", {}).get("klines", [])
kline_list = [kline.split(",") for kline in kline_data]
df = pd.DataFrame(kline_list, columns=["日期", "开盘价", "最高价", "最低价", "收盘价", "成交量"])
df = df.astype({"开盘价": 'float', "最高价": 'float', "最低价": 'float', "收盘价": 'float', "成交量": 'int'})
return df
else:
raise Exception(f"Error fetching K line data: {response.status_code}")
# 获取沪金连续合约(AU0)的最近 100 个日 K 线数据
df_klines = get_hexun_futures_klines("AU0")
print(df_klines)
在该代码中,通过调用和讯的 API 获取期货 K 线数据。API 返回的数据被转换为 Pandas DataFrame 格式,包含开盘价、最高价、最低价、收盘价和成交量信息,方便后续的数据处理和策略分析。
2. 使用上海期货交易所 API 获取 K 线数据
上海期货交易所(SHFE)提供了一些公开的期货数据接口,可以获取某些期货品种的行情数据。以下是通过 Python 编写的代码,调用上海期货交易所的 API 获取 K 线数据的示例。
import requests
import pandas as pd
def get_shfe_futures_klines(futures_code, limit=100):
"""
获取上海期货交易所期货的 K 线数据。
:param futures_code: 期货代码,例如 'CU' 表示沪铜合约
:param limit: 获取 K 线数据的数量
:return: K 线数据的 pandas DataFrame
"""
# 上海期货交易所的数据 API 示例,需根据实际情况调整 URL 和参数
url = f"https://www.shfe.com.cn/data/dailydata/kline/{futures_code}.json"
params = {
"limit": limit
}
response = requests.get(url, params=params)
if response.status_code == 200:
data = response.json()
records = data.get("records", [])
df = pd.DataFrame(records, columns=["日期", "开盘价", "最高价", "最低价", "收盘价", "成交量"])
df = df.astype({"开盘价": 'float', "最高价": 'float', "最低价": 'float', "收盘价": 'float', "成交量": 'int'})
return df
else:
raise Exception(f"Error fetching K line data: {response.status_code}")
# 获取沪铜(CU)的最近 100 个日 K 线数据
cu_klines = get_shfe_futures_klines("CU")
print(cu_klines)
在此示例中,调用了上海期货交易所的 API,获取指定期货品种的 K 线数据。获取的数据包括日期、开盘价、最高价、最低价、收盘价和成交量,并转换为 Pandas DataFrame 格式,方便进行后续的分析和策略研究。
3. 数据存储与管理
期货 K 线数据的存储和管理是后续进行策略分析和回测的基础,通常有两种存储方式:
-
内存缓存:对于实时性要求较高的 K 线数据,可以使用 Redis 等内存数据库进行缓存,以加快读写速度。
-
持久化存储:对于历史 K 线数据,建议将其存储到关系型数据库(如 MySQL)中,方便查询和分析。
import mysql.connector def save_klines_to_mysql(df, futures_code): """ 将期货 K 线数据保存到 MySQL 数据库中。 :param df: K 线数据 DataFrame :param futures_code: 期货代码 """ connection = mysql.connector.connect( host="localhost", user="root", password="password", database="futures_data" ) cursor = connection.cursor() create_table_query = f""" CREATE TABLE IF NOT EXISTS kline_{futures_code} ( 日期 VARCHAR(20), 开盘价 FLOAT, 最高价 FLOAT, 最低价 FLOAT, 收盘价 FLOAT, 成交量 BIGINT )""" cursor.execute(create_table_query) for _, row in df.iterrows(): insert_query = f""" INSERT INTO kline_{futures_code} (日期, 开盘价, 最高价, 最低价, 收盘价, 成交量) VALUES ('{row['日期']}', {row['开盘价']}, {row['最高价']}, {row['最低价']}, {row['收盘价']}, {row['成交量']}) """ cursor.execute(insert_query) connection.commit() cursor.close() connection.close() # 将期货 K 线数据保存到 MySQL 数据库 save_klines_to_mysql(df_klines, "AU0")
4. 数据采集优化策略
为了确保数据采集的完整性和效率,可以采取以下优化策略:
-
定时采集与实时更新:K 线数据通常按时间周期更新,可以使用定时任务(如
cron
)定期采集数据,确保数据的完整性和连续性。 -
错误处理与重试机制:在数据采集中可能会遇到网络连接失败、API 限制等问题。可以通过
try...except
结构捕获异常,并在遇到错误时进行重试,确保数据采集的稳定性。 -
数据清洗与格式化:不同数据源的数据格式可能会有所不同,需要对数据进行清洗和格式化,确保所有采集到的数据一致性,以便后续的统一分析。