量化交易系统开发-实时行情自动化交易-3.4.3.1.期货K线数据

19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。

接下来聊聊基于期货API获取K线数据。

期货市场的 K 线数据是进行市场分析和制定交易策略的重要依据,K 线数据通常包括开盘价、收盘价、最高价、最低价和成交量等信息。获取期货的 K 线数据,可以帮助交易者分析市场的趋势,判断进出场时机。以下是通过 Python 编写的代码示例,利用期货常用的公开 API(如上海期货交易所、和讯等)获取期货 K 线数据的详细开发内容。

1. 使用和讯 API 获取期货 K 线数据

和讯提供了期货市场的 K 线数据,可以通过 HTTP 请求获取特定期货品种的历史 K 线数据。以下代码展示了如何通过 Python 调用和讯的 API 获取期货 K 线数据。

import requests
import pandas as pd

def get_hexun_futures_klines(futures_code, limit=100):
    """
    获取和讯期货的 K 线数据。

    :param futures_code: 期货代码,例如 'AU0' 表示沪金连续合约
    :param limit: 获取 K 线数据的数量
    :return: K 线数据的 pandas DataFrame
    """
    url = f"https://api.hexun.com/futures/kline"
    params = {
        "code": futures_code,
        "type": "day",  # 'day' 表示日 K 线,可以修改为 'week' 或 'month'
        "count": limit
    }
    response = requests.get(url, params=params)
    if response.status_code == 200:
        data = response.json()
        kline_data = data.get("data", {}).get("klines", [])
        kline_list = [kline.split(",") for kline in kline_data]
        df = pd.DataFrame(kline_list, columns=["日期", "开盘价", "最高价", "最低价", "收盘价", "成交量"])
        df = df.astype({"开盘价": 'float', "最高价": 'float', "最低价": 'float', "收盘价": 'float', "成交量": 'int'})
        return df
    else:
        raise Exception(f"Error fetching K line data: {response.status_code}")

# 获取沪金连续合约(AU0)的最近 100 个日 K 线数据
df_klines = get_hexun_futures_klines("AU0")
print(df_klines)

在该代码中,通过调用和讯的 API 获取期货 K 线数据。API 返回的数据被转换为 Pandas DataFrame 格式,包含开盘价、最高价、最低价、收盘价和成交量信息,方便后续的数据处理和策略分析。

2. 使用上海期货交易所 API 获取 K 线数据

上海期货交易所(SHFE)提供了一些公开的期货数据接口,可以获取某些期货品种的行情数据。以下是通过 Python 编写的代码,调用上海期货交易所的 API 获取 K 线数据的示例。

import requests
import pandas as pd

def get_shfe_futures_klines(futures_code, limit=100):
    """
    获取上海期货交易所期货的 K 线数据。

    :param futures_code: 期货代码,例如 'CU' 表示沪铜合约
    :param limit: 获取 K 线数据的数量
    :return: K 线数据的 pandas DataFrame
    """
    # 上海期货交易所的数据 API 示例,需根据实际情况调整 URL 和参数
    url = f"https://www.shfe.com.cn/data/dailydata/kline/{futures_code}.json"
    params = {
        "limit": limit
    }
    response = requests.get(url, params=params)
    if response.status_code == 200:
        data = response.json()
        records = data.get("records", [])
        df = pd.DataFrame(records, columns=["日期", "开盘价", "最高价", "最低价", "收盘价", "成交量"])
        df = df.astype({"开盘价": 'float', "最高价": 'float', "最低价": 'float', "收盘价": 'float', "成交量": 'int'})
        return df
    else:
        raise Exception(f"Error fetching K line data: {response.status_code}")

# 获取沪铜(CU)的最近 100 个日 K 线数据
cu_klines = get_shfe_futures_klines("CU")
print(cu_klines)

在此示例中,调用了上海期货交易所的 API,获取指定期货品种的 K 线数据。获取的数据包括日期、开盘价、最高价、最低价、收盘价和成交量,并转换为 Pandas DataFrame 格式,方便进行后续的分析和策略研究。

3. 数据存储与管理

期货 K 线数据的存储和管理是后续进行策略分析和回测的基础,通常有两种存储方式:

  • 内存缓存:对于实时性要求较高的 K 线数据,可以使用 Redis 等内存数据库进行缓存,以加快读写速度。

  • 持久化存储:对于历史 K 线数据,建议将其存储到关系型数据库(如 MySQL)中,方便查询和分析。

    import mysql.connector
    
    def save_klines_to_mysql(df, futures_code):
        """
        将期货 K 线数据保存到 MySQL 数据库中。
    
        :param df: K 线数据 DataFrame
        :param futures_code: 期货代码
        """
        connection = mysql.connector.connect(
            host="localhost",
            user="root",
            password="password",
            database="futures_data"
        )
        cursor = connection.cursor()
        create_table_query = f"""
        CREATE TABLE IF NOT EXISTS kline_{futures_code} (
            日期 VARCHAR(20),
            开盘价 FLOAT,
            最高价 FLOAT,
            最低价 FLOAT,
            收盘价 FLOAT,
            成交量 BIGINT
        )"""
        cursor.execute(create_table_query)
        for _, row in df.iterrows():
            insert_query = f"""
            INSERT INTO kline_{futures_code} (日期, 开盘价, 最高价, 最低价, 收盘价, 成交量)
            VALUES ('{row['日期']}', {row['开盘价']}, {row['最高价']}, {row['最低价']}, {row['收盘价']}, {row['成交量']})
            """
            cursor.execute(insert_query)
        connection.commit()
        cursor.close()
        connection.close()
    
    # 将期货 K 线数据保存到 MySQL 数据库
    save_klines_to_mysql(df_klines, "AU0")
4. 数据采集优化策略

为了确保数据采集的完整性和效率,可以采取以下优化策略:

  • 定时采集与实时更新:K 线数据通常按时间周期更新,可以使用定时任务(如 cron)定期采集数据,确保数据的完整性和连续性。

  • 错误处理与重试机制:在数据采集中可能会遇到网络连接失败、API 限制等问题。可以通过 try...except 结构捕获异常,并在遇到错误时进行重试,确保数据采集的稳定性。

  • 数据清洗与格式化:不同数据源的数据格式可能会有所不同,需要对数据进行清洗和格式化,确保所有采集到的数据一致性,以便后续的统一分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC数据超市

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值