炮兵阵地
本周本来要学习状态压缩dp,太悲剧,一直到周五才有所突破。之所以选择这道题,因为大家说这道是入门题也是经典题。
在做这道之前,准确的说在抄这道题之前,我向一同学问状态压缩一些问题(这样做是为了节省自己的学习时间),他首先给我推荐一道HDU3006,让我有个状态压缩的概念,很好,学习学习A了,但我接下来的学习就惨了。我喜欢搜一大堆博客,先浏览一下,然后再找一篇,自己可能看得懂的代码,去学习。悲剧就悲剧到这。我选择的那篇博客与我看的那些博客,状态转移方程的写法有些不同,我凌乱了一天都没什么进展,直到今天,才看出来这个出入,所以以后学习时,一定要记住这个教训,否则会很悲剧,认真很重要。
不说废话了
每一行排放大炮受以下限制
1,第i-1行的排放
2、第i-2行的排放
3、相邻的一列
4、相邻的两列
(3、4)有Init预处理
状态转移 dp[i][j][t]=max(dp[i][j][t],dp[i-1][t][l]);
说下图的存储,每一行用一个数来表示(这个数就是H=1,p=0,那个字符串表示的二进制数),存在cur数组里面
stk 数据存储的是每行可能出现的状态
num 数组存储的每个状态放的炮数(1的个数)
dp[i][j][t]表示的第i行第j状态,第i-1行第t状态
代码如下
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int stk[70],num[70],cur[110];
int dp[110][70][70];
int N,M,top;
char map[20];
bool ok(int x){//此函数的作用判断该状态是否可以出现,可以除去许多不可能出现的状态,节省时间
if(x&(x<<1))return false;
if(x&(x<<2))return false;
return true;
}
void Init(){//把每行可能出现的状态,储存起来
int total=1<<N;
int i;top=0;
for(i=0;i<total;i++)
if(ok(i))stk[++top]=i;
}
int Count(int x){//计算每个状态出现的炮数
int count=0;
while(x){
x&=(x-1);
count++;
}
return count;
}
inline bool fit(int x,int k)//判断该状态与地图是否冲突,(因为只有平原才能放大炮)
{
if(cur[k]&x) return 0;
return 1;
}
int main(){
int i,j,k,t,l;
while(scanf("%d%d",&M,&N)!=EOF){
Init();//Init()函数
for(i=1;i<=M;i++){//这一段就是将地图存放在cur数组里
cur[i]=0;
scanf("%s",map);
for(j=0;j<N;j++)
if(map[j]=='H')cur[i]+=(1<<j);
}
memset(dp,-1,sizeof(dp));
for(i=1;i<=top;i++){
num[i]=Count(stk[i]);
if(fit(stk[i],1))dp[1][i][1]=num[i];
}
for(i=2;i<=M;i++){
for(j=1;j<=top;j++){
if(!fit(stk[j],i))continue;//为第i行选择状态,找出与地图不冲突的
for(t=1;t<=top;t++){
if(stk[t]&stk[j])continue;//寻找第i行状态不与第i-1不冲突的状态
for(l=1;l<=top;l++){
if(stk[j]&stk[l])continue;//寻找第i行状态不与第i-2行不冲突的状态
if(dp[i-1][t][l]==-1)continue;
dp[i][j][t]=max(dp[i][j][t],dp[i-1][t][l]+num[j]);
}
}
}
}
/*for(i = 2;i <= M;i++){//这段是别人的代码它的dp[i][k][t]表示的是第i行的状态为t,第i-1行的状态是k
for(t = 1;t <= top;t++){
if(!fit(stk[t],i)) continue;//第i行状态与地图冲突
for(j = 1;j <= top;j++)
{
if(stk[t]&stk[j])continue;//相邻两行(i,i-1)的状态冲突
for(k = 1;k <= top;k++)
{
if(stk[t]&stk[k])continue;
if(dp[i-1][j][k]==-1)continue;
dp[i][k][t] =max(dp[i][k][t],dp[i-1][j][k]+num[t]);
}
}
}
}*/
int ans = 0;//找出最大值
for(i = 1; i <= M; ++i)
for(j = 1; j <= top; ++j)
for(k = 1; k <= top; ++k)
ans = max(ans,dp[i][j][k]);
printf("%d\n",ans);
}
}
呵呵,状态压缩dp正在学习,悲剧,郁闷,收获和兴奋中