干货 | 2019 数据竞赛TOP方案合集

2020一起学习

特意准备一份数据竞赛大礼包送给大家!

呕心沥血、不眠不休整理了

2019 经典赛事TOP方案大汇总

助力大家在新的一年奖金拿到手软!

疫情当前

注意防护、不要生病!

CCF大数据与计算智能大赛

【基于OCR的身份证要素提取】

赛事方向:分类预测、数据挖掘

赛事简介:设计针对商业银行身份证识别的OCR系统,识别身份证中姓名、地址、身份证号码和身份证有效日期等信息。

方案分享:

https://mp.weixin.qq.com/s/_Vxg5zRAzeUNoF9N3ungXg

【云计算时代的大数据查询分析优化】

赛事方向:性能优化、数据库

赛事简介:本赛题旨在基于海量数据场景下,借助于CPU新指令或新硬件,提升复杂计算的效率。给定数据集,三张表 customer、lineitem和orders,分别行数为150000,600037902和150000000。输入参数为多个变参组合,要求对每个组合,都能给出正确的结果。

方案分享:

https://mp.weixin.qq.com/s/HVZG37i3xeGT3q1Wtzraew

【多人种人脸识别】

赛事方向:性能优化、人脸识别

赛事简介:设计针对商业银行身份证识别的OCR系统,识别身份证中姓名、地址、身份证号码和身份证有效日期等信息。

方案分享:

https://mp.weixin.qq.com/s/fLzFdaxIKT9xPV4TDbVPdw

【三角形图计算算法设计及性能优化】

赛事方向:性能优化、图计算

赛事简介:在给定服务器平台,以及数据集上实现三角形计数(Triangle Counting,TC)算法,调试并获得最高的性能。三角形的定义是一个包含三个顶点的子图,其中顶点两两相连。参赛选手将重点考虑如何在大规模图数据中,精确计算三角形的个数。比赛在决赛阶段,所考虑的图数据的规模将达到228~229顶点和4-5billion条边。

方案分享:

https://mp.weixin.qq.com/s/lAj_udo-Q05Rmk8hGfPemA

【互联网新闻情感分析】

赛事方向:自然语言处理、机器学习

赛事简介:参赛者需要对我们提供的新闻数据进行情感极性分类,其中正面情绪对应0,中性情绪对应1以及负面情绪对应2。根据我们提供的训练数据,通过您的算法或模型判断出测试集中新闻的情感极性。

方案分享:

https://mp.weixin.qq.com/s/SgkQB7t0j2_kqHeotspHBQ

【离散制造过程中典型工件的质量符合率预测】

赛事方向:分类预测、数据挖掘

赛事简介:由于在实际生产中,同一组工艺参数设定下生产的工件会出现多种质检结果,所以我们针对各组工艺参数定义其质检标准符合率,即为该组工艺参数生产的工件的质检结果分别符合优、良、合格与不合格四类指标的比率。相比预测各个工件的质检结果,预测该质检标准符合率会更具有实际意义。本赛题要求参赛者对给定的工艺参数组合所生产工件的质检标准符合率进行预测。

方案分享:

https://mp.weixin.qq.com/s/MYbQ_J0XQwA2zs9VxO1IEA

【乘用车细分市场销量预测】

赛事方向:预测回归、数据挖掘

赛事简介:本赛题需要参赛队伍根据给出的60款车型在22个细分市场(省份)的销量连续24个月(从2016年1月至2018年12月)的销量数据,建立销量预测模型;基于该模型预测同一款车型和相同细分市场在接下来一个季度连续4个月份的销量;除销量数据外,还提供同时期的用户互联网行为统计数据,包括:各细分市场每个车型名称的互联网搜索量数据;主流汽车垂直媒体用户活跃数据等。参赛队伍可同时使用这些非销量数据用于建模。除了模型的准确性外,参赛队伍需对本赛题任务有系统性的思考和设计,在决赛阶段,参赛队伍对于所提交的模型的适应性、可扩展性、代码的工程性等方面也会影响参赛队伍的最终名次。

方案分享:

https://mp.weixin.qq.com/s/-tT9BKrANTwJK9-N1K4j9g

【金融信息负面及主体判定】

赛事方向:情感识别、自然语言处理

赛事简介:该赛题分为两个子任务:给定一条金融文本和文本中出现的金融实体列表,负面信息判定:判定该文本是否包含金融实体的负面信息。如果该文本不包含负面信息,或者包含负面信息但负面信息未涉及到金融实体,则负面信息判定结果为0。负面主体判定:如果任务1中包含金融实体的负面信息,继续判断负面信息的主体对象是实体列表中的哪些实体。

方案分享:

https://mp.weixin.qq.com/s/df8uxXenu_gRLjbKIwm12g

【视频版权检测算法】

赛事方向:目标识别、图像处理

赛事简介:本次竞赛将考察经过复合变换后的短视频关联到对应长视频的算法效果,其中不仅要找到短视频的原始长视频,还要计算出对应的时间段。过程中可能包括视频解码抽帧、视频或图像特征及指纹、视频相似检索等相关算法及技术方案。除了考察视频特征的鲁棒性外,也需要算法模型有一定的实时及并发能力。

方案分享:

https://mp.weixin.qq.com/s/GSmiJOUv_VQ7V2js_ONR8Q

【企业网络资产及安全事件分析与可视化】

赛事方向:数据可视化、数据挖掘

赛事简介:1、初赛 Preliminary round:请基于该企业内部正常网络日志数据,给出可视分析方案,对企业内部的网络资产进行发现和分类,并给出资产之间的通信模式。2、复赛 Semi-final round:该企业重要数据发生泄露,请根据该期间内的公司网络日志数据,给出可视分析方案,找出可能的资产异常通信模式,并对该网络安全事件的攻击过程进行描述。

方案分享:

https://mp.weixin.qq.com/s/j_suUvBGqiRf_FKIdPIWgQ

【“技术需求”与“技术成果”项目之间关联度计算模型】

赛事方向:关系挖掘、自然语言处理

赛事简介:通过大赛发现好的方法、算法或模型,并提供用于验证的程序源代码,可应用于平台模拟人工,实现“需求——成果智能匹配服务”。技术需求与技术成果之间的关联度分为四个层级:强相关、较强相关、弱相关、无相关。人工判断技术需求和技术成果关联度的方法是:从事技术转移工作的专职工作人员,阅读技术需求文本和技术成果文本,根据个人经验予以标注。

方案分享:

https://mp.weixin.qq.com/s/GgrWnqqGRTUWHTGaYn1l6w

【海口市-交通流量时空演变特征可视分析】

赛事方向:数据可视化、数据挖掘

赛事简介:基于2017年5月1日-10月31日海口市的滴滴平台上的订单相关的数据,结合海口市地理特征、城市特性和人口信息,利用可视分析技术与表达模型,对2017年半年来海口市交通需求演变进行勾画,分析影响出行变化的主要因素,并根据上述分析,为市民或城市交通管理部门提供建议。

方案分享:

https://mp.weixin.qq.com/s/OGGVAzS9N__6o7MA_69LEw

【互联网金融新实体发现】

赛事方向:命名实体识别、自然语言处理

赛事简介:从提供的金融文本中识别出现的未知金融实体,包括金融平台名、企业名、项目名称及产品名称。持有金融牌照的银行、证券、保险、基金等机构、知名的互联网企业如腾讯、淘宝、京东等和训练集中出现的实体认为是已知实体。

方案分享:

https://mp.weixin.qq.com/s/SgkQB7t0j2_kqHeotspHBQ

2019数字中国创新大赛

【智能盘点—钢筋数量AI识别】

赛事方向:机器学习、计算机视觉

赛事简介:本赛题基于广联达公司提供的钢筋进场现场的图片和标注,希望参赛者综合运用计算机视觉和机器学习/深度学习等技术,实现拍照即可完成钢筋点根任务,大幅度提升建筑行业关键物料的进场效率和盘点准确性,将建筑工人从这项极其枯燥繁重的工作中解脱出来。

方案分享:

1、https://discussion.datafountain.cn/questions/1567/answers/22514

2、https://github.com/HarleysZhang/detect_steel_number

【海上风场SCADA数据缺失智能修复】

赛事方向:机器学习、数据挖掘

赛事简介:我们抽取某一海上风电场实际SCADA数据,并人为地去除其中的部分数据,包括但不限于删去某个时间段的全部数据、某台机组在某段时间的数据、某台机组在某段时间的部分字段信息等等,参赛者需要利用剩余数据对删去的数据进行恢复,最终以恢复的准确度为评价基准。

方案分享:

1、https://discussion.datafountain.cn/questions/1568/answers/22555

2、https://discussion.datafountain.cn/questions/1568/answers/22549

3、https://discussion.datafountain.cn/questions/1568/answers/22370

【文化传承—汉字书法多场景识别】

赛事方向:计算机视觉、预测分析

赛事简介:书法是中华民族文化传承的瑰宝,希望此次大赛能够通过人工智能算法实现书法文字的自动识别,解决实际场景中有些书法文字难以识别的问题。要求参赛者给出测试数据集中每张图片中文字的位置及对应的内容。本次大赛会提供已标注的训练图片集供参赛者开发训练生成模型和算法,参赛者用开发&训练生成的模型和算法识别测试图片集中每张图片书法文字的内容以及文字对应的位置并提交竞赛平台,以参赛者提交的结果准确率作为竞赛排名成绩的依据。

方案分享:

1、https://discussion.datafountain.cn/questions/1571/answers/22510

2、https://discussion.datafountain.cn/questions/1571/answers/22399

3、https://discussion.datafountain.cn/questions/1571/answers/22373

【大数据医疗—肝癌影像AI诊断】

赛事方向:深度学习、医学图像处理

赛事简介:本赛题基于肝部腹腔强化CT断层扫描数据,以及相应的诊断结果。希望参赛者利用数据建模技术,构建基于医学影像的肝癌辅助诊断模型,利用人工智能手段对腹部CT影像进行诊断,判断患者良恶性,以帮助医生更加高效地对肝癌患者进行筛查。

方案分享:

https://discussion.datafountain.cn/questions/1572/answers/22371

【混凝土泵车砼活塞故障预警】

赛事方向:机器学习、预测性维护

赛事简介:本赛题由中科云谷科技有限公司提供某类混凝土泵车砼活塞故障有关的数据,包括工作时间、发动机转速、油温、压力等多类工况数据,以及对应情况下,在未来完成给定工作量(混凝土泵送方量)的过程中,活塞是否故障的标识信息。希望参赛者利用大数据分析、机器学习、深度学习等方法,提取合适的特征、建立合适的故障预测模型,再根据测试数据预测该活塞在未来给定工作量内(泵送方量),是否会发生故障。

方案分享:

1、https://github.com/pinlank/DCIC_Failure-Prediction-of-Concrete-Piston-for-Concrete-Pump-Vehicles_1st

2、https://mp.weixin.qq.com/s/G8SqPqXp5SIm6sZLakNMPg

3、https://discussion.datafountain.cn/questions/1569/answers/22528

【消费者人群画像—信用智能评分】

赛事方向:机器学习、数据挖掘

赛事简介:中国移动福建公司提供2018年x月份的样本数据(脱敏),包括客户的各类通信支出、欠费情况、出行情况、消费场所、社交、个人兴趣等丰富的多维度数据,参赛者通过分析建模,运用机器学习和深度学习算法,准确评估用户消费信用分值。

方案分享:

1、https://mp.weixin.qq.com/s/t0oIP6XPWeSxDV2_lsliiA

2、https://github.com/C-rawler/DCIC-2019-Credit-intelligence-score-2th-Place

3、https://github.com/xy0210/DCIC-2019-China-Mobile

2019“泰达·华博杯”创新创业大赛

【基于虚拟仿真环境下的自动驾驶交通标志识别】

赛事方向:机器学习、图像识别

赛事简介:在此任务中,我们将提供给参赛者一系列基于虚拟仿真环境下的自动驾驶视频图像,其中交通标志牌将作出标注。要求参赛者识别测试数据中随机出现的交通标志牌,并按照出现顺序反馈对应的识别结果。该虚拟仿真环境下伴随行人、非机动车等干扰因素,并具备多样性天气条件(包含光照)。

方案分享:

https://discussion.datafountain.cn/questions/1784/answers/22590

【汽车论坛消费者用车体验内容的判别与标注】

赛事方向:自然语言处理

赛事简介:国内某知名汽车厂商的商务车业务部门,除了从传统渠道如4S店等获得汽车质量与用车反馈信息,还需要从互联网上的网友发布内容获得自有与竞品车型的汽车消费者关于用车体验与质量反馈信息。海量信息受该部门委托,针对互联网中各大汽车论坛中相关车型论坛的网友发帖内容进行数据分析,根据帖子内容,首先判断是否为真实消费者发布,其次判断是否为用车体验与质量反馈内容,如果是用车体验与质量反馈内容,则进一步标注出汽车的关于用车的哪个方面,以及具体哪个零部件的哪类质量问题。通过这一系列内容判别与标注处理,业务部门可以通过互联网渠道反馈,掌握自家各车型与竞品车型的消费者用车评价分类分布情况,进而指导产品设计与生产部门进行设计改进与品控工作,以及给市场部门提供宣传基础数据素材。希望实现算法自动准确的判别与标注,能够节省人工标注成本,提升数据分析处理效率,提升消费者用车评价反馈到厂家的及时性。

方案分享:

https://github.com/w5688414/car-forum-customer

2019“神气”大数据算法与应用赛

【算法组:卫星云图+地面观测云图预测辐照量】

赛事方向:图像识别

赛事简介:光伏发电行业对每一天的辐照量数据的要求较高,目前除本地建设辐照量观测设备这一方法外还没有特别好的预测辐照量的算法。辐照数据与天空云量的关联很大,通过大赛官方提供的某一点卫星云图数据,利用图片算法识别通过卫星云图来预测该点当天的辐照量数据。

方案分享:

https://discussion.datafountain.cn/questions/2293/answers/23414

【应用组:小水库汛情预警及城市交通积水预测】

赛事方向:数据挖掘

赛事简介:赛题任务一:小水库的安全度汛是防汛的重点工作,目前针对大江大河、大水库的监测、预报、预警体系相对健全,小水库往往监测 为主预报不足。提升预报精确度、延长预报的预见期,可为小水库下游的群众赢得更为充分的避险转移时间。赛题任务二:城市内涝严重影响城市的正常运转和公众的正常生活,目前城市积水观测能力不足,而城市积水模拟和预测也因为数据缺乏多集中在某个区域。降水量预报时间上、空间上的精度提升为整个城市交通易积水点的精准雨量预报以及未来积水预测提供了有效数据支撑。

方案分享:

https://discussion.datafountain.cn/questions/2290/answers/23411

“观云识天”人机对抗大赛

【机器图像算法赛道-天气识别】

赛事方向:图像识别

赛事简介:根据大赛组织方提供的图片数据训练算法,能够区分降雨、降雪、冰雹、露、霜、雾(霾)、雾凇、雨凇、电线积冰9种天气现象。

方案分享:

https://discussion.datafountain.cn/questions/2291/answers/23412

【机器图像算法赛道-云状识别】

赛事方向:图像识别

赛事简介:根据大赛组织方提供的图片数据训练算法,识别3族10属29类云状。

方案分享:

https://discussion.datafountain.cn/questions/2292/answers/23413

2019 第五届“四维图新”杯创新大赛

赛事方向:无人驾驶

赛事简介:大赛融入自动驾驶业务和位置大数据元素,立足产业化、规模化、普及化,面向计算机为主、同时覆盖电子信息工程、GIS(地理信息系统)、自动化等专业方向。我们针对本次赛题开放了近一万帧针对不同场景下自动驾驶视觉任务的训练数据,包含移动物体、信号灯、交通标牌的检测以及车道线、可行驶区域的分割精细标注数据。要求参赛者提供的决赛方案可以在NVIDIA 1080 GPU或相同算力设备上运行达到15fps(初赛不考虑速度,如果决赛方案创新性很强,也可适当放宽实时性要求)。

方案分享:

https://github.com/zhengye1995/datafountain_siweituxin_autodriver_det

安全AI挑战者计划第二期 - ImageNet图像分类对抗攻击

赛事方向:计算机视觉

赛事简介:此次比赛针对图像分类模型进行对抗攻击。选手需要在不知道模型详细信息的前提下,构造有目标或者无目标的对抗样本。

方案分享:

第一名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.9.3a678e84c52JnN&postId=87325

第二名: https://tianchi.aliyun.com/forum/postDetail?spm=5176.12282029.0.0.1a3533669qfa3x&postId=87190

第三名: https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.3.3a678e84c52JnN&postId=87278

"合肥高新杯"心电人机智能大赛

赛事方向:计算机视觉

赛事简介:本次大赛要求选手以心电图异常事件预测为赛题方向,依据心电图机8导联的数据,以及病患年龄、性别等因素,用统计学、机器学习、深度学习等方式探索挖掘心电波形与心电异常事件之间的关系,构建精准预测模型。

方案分享:

第一名:https://tianchi.aliyun.com/notebook-ai/detail?postId=85958

第二名:https://tianchi.aliyun.com/notebook-ai/detail?postId=85999

第四名:https://tianchi.aliyun.com/forum/postDetail?postId=85990

第六名:https://tianchi.aliyun.com/notebook-ai/detail?postId=86093

Apache Flink极客挑战赛——垃圾图片分类

赛事方向:计算机视觉

赛事简介:本赛场聚焦布匹疵点智能检测,要求选手研究开发高效可靠的计算机视觉算法,提升布匹疵点检验的准确度,降低对大量人工的依赖,提升布样疵点质检的效果和效率。要求算法既要检测布匹是否包含疵点,又要给出疵点具体的位置和类别,既考察疵点检出能力、也考察疵点定位和分类能力。

方案分享:

第一名:https://tianchi.aliyun.com/notebook-ai/detail?postId=83259

第二名:https://tianchi.aliyun.com/forum/postDetail?postId=83611

第三名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.3.78057195OwI8lK&postId=83701

2019广东工业智造创新大赛

【面料剪裁利用率优化】

赛事方向:计算机视觉

赛事简介:本赛场聚焦布匹疵点智能检测,要求选手研究开发高效可靠的计算机视觉算法,提升布匹疵点检验的准确度,降低对大量人工的依赖,提升布样疵点质检的效果和效率。

方案分享:

第一名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.21.43b46448bS8eFW&postId=83698

第二名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.24.43b46448bS8eFW&postId=83587

第三名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.39.43b46448bS8eFW&postId=83602

【布匹疵点智能识别】

赛事方向:计算机视觉

赛事简介:本赛场聚焦面料剪裁利用率优化,要求选手研究开发高效可靠的算法,在较短时间范围内计算获得高质量可执行的排版结果,减少切割中形成的边角废料,提升面料切割利用率,减少计划时间、提高工作效率和避免人工计算的失误,提升价值降低成本。

方案分享:

第一名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.21.43b46448bS8eFW&postId=83698

第二名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.24.43b46448bS8eFW&postId=83587

第三名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.39.43b46448bS8eFW&postId=83602

CIKM 2019 E-Commerce AI Challenge 

【超大规模推荐之用户兴趣高效检索】

赛事方向:结构化数据

赛事简介:参赛选手需要为测试集中的每一个用户生成一个商品推荐列表,列表中需要包含该用户最有可能感兴趣的 50 个商品。选手提交的推荐结果将用于和真实的用户兴趣进行比对,推荐结果的精准度和新颖性将作为最终的评价指标并反馈给参赛者。

方案分享:

第一名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.12.762d5059KmffL5&postId=81152

第三名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.3.762d5059KmffL5&postId=81487

第四名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.9.762d5059KmffL5&postId=81500

【用户行为预测】

赛事方向:结构化数据

赛事简介:参赛选手需要为测试集中的每一个用户生成一个商品推荐列表,列表中需要包含该用户最有可能感兴趣的 50 个商品。选手提交的推荐结果将用于和真实的用户兴趣进行比对,推荐结果的精准度和新颖性将作为最终的评价指标并反馈给参赛者。

方案分享:

第一名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.12.762d5059KmffL5&postId=81152

第三名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.3.762d5059KmffL5&postId=81487

第四名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.9.762d5059KmffL5&postId=81500

全球数据智能大赛

【肺部CT多病种智能诊断】

赛事方向:计算机视觉

赛事简介:大赛旨在通过提供大规模经过严格标注的临床胸部CT影像数据,选手能够提出并综合运用目标检测、深度学习等优秀方法对肺结节、索条、动脉硬化或钙化、淋巴结钙化等影像特征进行定位和疾病分类工作,提高检测的速度和精度,辅助医生进行诊断。

方案分享:

第一名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.18.3389c6b09UMpyD&postId=73774

第二名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.6.3389c6b0bblSpf&postId=74162

第三名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.9.3389c6b0bblSpf&postId=74671

【特色农作物精准种植创新赛】

赛事方向:结构化数据

赛事简介:算法赛要求选手以“科技扶农”水稻种植预测为课题,依据广西81个县早稻、晚稻作物4年产量的相关历史数据,结合4年气象降雨、温度、光照、温差等气象数据,一方面探索广西各地区气象环境局部特征,构建未来气象预测系统,另一方面挖掘气象和水稻产量的关系,构建因地制宜精准产量预测模型。

方案分享:

第六名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.6.251b5d89rdZQlJ&postId=76806

安泰杯 —— 跨境电商智能算法大赛

赛事方向:结构化数据

赛事简介:本次比赛给出若干日内来自成熟国家的部分用户的行为数据,以及来自待成熟国家的A部分用户的行为数据,以及待成熟国家的B部分用户的行为数据去除每个用户的最后一条购买数据,让参赛人预测B部分用户的最后一条行为数据。

方案分享:

第一名:https://tianchi.aliyun.com/forum/postDetail?postId=82142

智联招聘人岗智能匹配

赛事方向:计算机视觉

赛事简介:本赛场聚焦布匹疵点智能检测,要求选手研究开发高效可靠的计算机视觉算法,提升布匹疵点检验的准确度,降低对大量人工的依赖,提升布样疵点质检的效果和效率。要求算法既要检测布匹是否包含疵点,又要给出疵点具体的位置和类别,既考察疵点检出能力、也考察疵点定位和分类能力。

方案分享:

第一名:https://tianchi.aliyun.com/notebook-ai/detail?postId=83259

第二名:https://tianchi.aliyun.com/forum/postDetail?postId=83611

第三名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.3.78057195OwI8lK&postId=83701

智首届中文NLP2SQL挑战

赛事方向:自然语言处理

赛事简介:首届中文NL2SQL挑战赛,使用金融以及通用领域的表格数据作为数据源,提供在此基础上标注的自然语言与SQL语句的匹配对,希望选手可以利用数据训练出可以准确转换自然语言到SQL的模型。

方案分享:

第一名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.6.694d5fc6MufCgz&postId=78781

第二名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.3.694d5fc6UJzAgo&postId=78855

第五名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.24.694d5fc6UJzAgo&postId=78747

2019年县域农业大脑AI挑战赛

赛事方向:计算机视觉

赛事简介:本次大赛,我们选择了具有独特的地理环境、气候条件以及人文特色的贵州省兴仁市作为研究区域,聚焦当地的特色优势产业和支柱产业——薏仁米产业, 以薏仁米作物识别以及产量预测为比赛命题,要求选手开发算法模型,通过无人机航拍的地面影像,探索作物分类的精准算法,识别薏仁米、玉米、烤烟、人造建筑四大类型,提升作物识别的准确度,降低对人工实地勘察的依赖,提升农业资产盘点效率,并结合产量标注数据预测当年的薏仁米产量,提升农业精准管理能力。

方案分享:

第一名:https://tianchi.aliyun.com/competition/entrance/231717/forum

第二名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.3.25ea4054EKhA9y&postId=79094

全球数据智能大赛

赛事方向:计算机视觉

赛事简介:大赛旨在通过提供大规模经过严格标注的临床胸部CT影像数据,选手能够提出并综合运用目标检测、深度学习等优秀方法对肺结节、索条、动脉硬化或钙化、淋巴结钙化等影像特征进行定位和疾病分类工作,提高检测的速度和精度,辅助医生进行诊断。

方案分享:

第一名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.18.3389c6b09UMpyD&postId=73774

第二名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.6.3389c6b0bblSpf&postId=74162

第三名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.9.3389c6b0bblSpf&postId=74671

2019 Future Food Challenge

赛事方向:自然语言处理

赛事简介:In order to protect consumer health and lower the risk of foodborne incidents Bühler has recently launched the freemium service safefood.ai to create additional intelligence on food-safety related events such as product recalls, foodborne outbreaks or fraudulent activity.

方案分享:

第五名:https://unclegem.cn/2019/08/27/2019-Future-Food-Challenge%E7%AB%9E%E8%B5%9B%E6%80%BB%E7%BB%93/

津南数字制造算法挑战赛

【原料企业工艺优化】

赛事方向:计算机视觉

赛事简介:异烟酸用作医药中间体,主要用于制抗结核病药物异烟肼,也用于合成酰胺、酰肼、酯类等衍生物。烟酰胺生产过程包含水解脱色、结晶甩滤等过程。每个步骤会受到温度、时间、压强等各方面因素的影响,造成异烟酸收率的不稳定。为保证产品质量和提高生产效率,需要调整和优化生产过程中的参数。然而,根据传统经验的人工调整工艺参数费时费力。近年来,人工智能在工艺参数优化以及视频检测等领域取得了突飞猛进的成果。AI技术的发展有望助力原料药制造企业实现工艺生产革新,规范生产操作过程,从而达到提高产品的收率的目标。

本次大赛要求选手以异烟酸生产过程中的各参数,包括各主要步骤的时间、温度、压强等参数为基础,设计精确智能的优秀算法,提升异烟酸的收率。

方案分享:

第一名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.6.54587b9d92MIBz&postId=54381

第四名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.12.54587b9dQNMpxX&postId=54342

第五名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.15.54587b9dNDp7YX&postId=54332

【物流货物限制品监测】

赛事方向:结构化数据

赛事简介:包裹X光限制品监测作为日常包裹物流行业及安防行业的重要环节,承担着防止易燃易爆等危险品进入货运渠道,管理刀具等特殊货运物品,监测毒品等国家重点违禁品偷运等工作。随着线上购物的普及和快速发展,线上物流包裹数量已经远超人工可以处理的范围,给物流包裹监管带来了巨大挑战。

本次比赛着眼于此,邀请选手针对给出的限制品种类,利用X光图像及标注数据,研究开发高效的计算机视觉算法,监测图像是否包含危险品及其大致位置。通过自动化监测包裹携带品算法,降低漏检风险及误报率,提升危险品管理效率。本次比赛是一次未来物流及安防行业的有益尝试,对行业未来发展有着不可估量的价值。

方案分享:

第二名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.12.8dc78064JBouEE&postId=57849

第三名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.18.8dc78064JBouEE&postId=57797

第六名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.9.8dc78064JBouEE&postId=57411

全球城市计算AI挑战赛

赛事方向:结构化数据

赛事简介:大赛以“地铁乘客流量预测”为赛题,参赛者可通过分析地铁站的历史刷卡数据,预测站点未来的客流量变化,帮助实现更合理的出行路线选择,规避交通堵塞,提前部署站点安保措施等,最终实现用大数据和人工智能等技术助力未来城市安全出行。

大赛开放了20190101至20190125共25天地铁刷卡数据记录,共涉及3条线路81个地铁站约7000万条数据作为训练数据(Metro_train.zip),供选手搭建地铁站点乘客流量预测模型。训练数据(Metro_train.zip)解压后可以得到25个csv文件,每天的刷卡数据均单独存在一个csv文件中,以record为前缀。如2019年1月1日的所有线路所有站点的刷卡数据记录存储在record_2019-01-01.csv文件中,以此类推。同时大赛提供了路网地图,即各地铁站之间的连接关系表,存储在文件Metro_roadMap.csv文件中供选手使用。

方案分享:

第一名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.30.57306e29IU3HW0&postId=54550

第三名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.12.57306e29qvipUj&postId=56649

第五名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.21.57306e29IU3HW0&postId=54653

Alibaba Cloud German AI Challenge 201

赛事方向:计算机视觉

赛事简介:The task here is to perform Local Climate Zones (LCZ) classification in cities over the globe. LCZ is a generic, climate-based classification of the morphology of urban areas and natural landscapes [2] (Please see the p “Local Climate Zone” for more details of the classes.). Because of the rapid urbanization in the last decades, LCZ classification has attracted great attention in the remote sensing community in recent years. It has various potential use cases, such as demographic study in informal settlement etc. The input data of the contest is co-registered Sentinel-1 and Sentinel-2 image patches over 42 different cities in different geographic and culture regions. Hence, the dataset is known in the remote sensing community as “LCZ42”. The contest aims to promote innovation in classification algorithms, especially concerning the transferability of the proposed algorithm to different cultural regions, SAR and optical data fusion strategies, and big data processing techniques. The ranking is based on quantitative accuracy parameters computed with respect to test samples from cities unseen during training.

方案分享:

第十名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.3.f55910cdpzVNSX&postId=46819

第十七名:https://tianchi.aliyun.com/forum/postDetail?spm=5176.12586969.1002.30.f55910cdujl8VU&postId=46986

莱斯杯:全国第二届“军事智能机器阅读”挑战赛

赛事方向:自然语言处理

赛事简介:本次竞赛将提供面向军事应用场景的大规模中文阅读理解数据集,围绕多文档机器阅读理解进行竞赛,涉及理解、推理等复杂技术。每个问题对应五篇候选文章,问题与篇章中的答案证据句间存在较大的语法与句式变化。需要在多篇章定位与深度理解的基础上,从存在干扰项的多篇文章中搜寻出最优答案,更富挑战性的是问题的答案可能需要结合至少两篇文章的相关内容,进行关联推断才能够准确得出。

方案分享:

第一名:https://www.kesci.com/home/project/5dbbec9f080dc300371eda5d

第二名:https://www.kesci.com/home/project/5dbd09b3080dc300371f056f

第四名:https://www.bilibili.com/video/av74006222?from=search&seid=14864289781361104410M

贵在联通——“联创黔线”杯大数据应用创新大赛

赛事方向:结构化数据

赛事简介:参赛选手需要根据2017年贵阳市常住居民的部分用户的历史数据(训练集),以及2018年6月、7月的数据(测试集),对2018年8月贵阳市常住居民前往黔东南州进行省内旅游的可能性进行预测。

方案分享:

第十名:https://www.kesci.com/home/competition/forum/5d7785c3ecd45c001dcb731e

第十三名:https://www.kesci.com/home/competition/forum/5d776548080a0f001df6dc99

第十五名:https://www.kesci.com/home/competition/forum/5d679188080a0f001df6d61a

2019中国高校计算机大赛——大数据挑战赛

赛事方向:自然语言处理

赛事简介:搜索中一个重要的任务是根据query和title预测query下doc点击率,本次大赛参赛队伍需要根据脱敏后的数据预测指定doc的点击率,结果按照指定的评价指标使用在线评测数据进行评测和排名,得分最优者获胜。

方案分享:

第二名:https://www.kesci.com/home/competition/forum/5d6e5a00ecd45c001dcb6f56

第三名:https://www.kesci.com/home/competition/forum/5d664430326504000f1dfa04

第四名:https://www.kesci.com/home/competition/forum/5d6627be28c55d000f24a36a

地球物候的深度学习预测

赛事方向:计算机视觉

赛事简介:使用植被指数的过往数据记录来预测未来几期的植被指数。

方案分享:

baseline:https://www.dcjingsai.com/common/bbs/topicDetails.html?tid=2971

华为算法精英大赛

赛事方向:结构化数据

赛事简介:赛题一:华为视频会员用户流失预警

赛题二:华为账号用户人口属性预测

赛题三:华为PPS CTR预测

方案分享:

第十四名:https://github.com/WeavingWong/DigiX_HuaWei_Population_Age_Attribution_Predict

AI开发者大赛

【阿尔茨海默综合征预测挑战赛】

赛事方向:结构化数据

赛事简介:为研究如何自动筛查出阿兹海默氏症患者,我们建立了一个普通话痴呆症检测数据库,记录了超过500个老年人参加看图说话任务的音频和文本。看图说话任务取自波士顿失语症诊断测试 (Diagnostic Aphasia Examination) 。任务要求主试者先向被试展示这幅图片然后说“告诉我你在这幅图里看到的正在发生的一切 ”。允许主试在被试无法说出很多内容的时候鼓励被试。每个音频文件都先被采集然后人工转出文本。音频中出现不属于看图说话任务的对话没有被转写。

方案分享:

baseline:https://github.com/serenzhiyan/Recognition_of_Alzheimer_Disease

【广告营销反作弊算法挑战赛】

赛事方向:结构化数据

赛事简介:移动广告反欺诈需要强大的数据作为支撑,本次大赛提供了讯飞AI营销云海量的现网流量数据作为训练样本,参赛选手需基于提供的样本构建模型,预测流量作弊与否

方案分享:

baseline:https://github.com/Fieldhunter/2019-XunFei-AI-competition-demo

第四届“魔镜杯”数据应用大赛

赛事方向:结构化数据

赛事简介:本次比赛以互联网金融信贷业务为背景,以《现金流预测》为题,希望选手能够利用我们提供的数据,精准地预测资产组合在未来一段时间内每日的回款金额。选手需要分别预测每个资产标的第一期从成交日期至第一期应还款日期每日的还款金额,并最终在整体上以资产组合每日还款的误差作为评价指标。

方案分享:

第二名:

https://github.com/LibraM9/ppd_mirror

baseline:https://github.com/zzz333za/ppd

baseline:https://github.com/vinklibrary/ppd_mojing4

2019数据智能算法大赛

赛事方向:结构化数据

赛事简介:购买转化率是品牌商家在电商平台运营时最关注的指标之一,本次大赛中云积互动提供了品牌商家的历史订单数据,参赛选手通过人工智能技术构建预测模型,预估用户人群在规定时间内产生购买行为的概率。

方案分享:

baseline:https://github.com/Travisgogogo/2019-datacastle-enbrands

2019年“创青春·交子杯”新网银行高校金融科技挑战赛

赛事方向:结构化数据

赛事简介:本次唇语识别任务,挑战者需要利用说话人嘴唇运动序列图片建立模型识别说话内容,初赛为线上竞赛,需要对中文常用词语进行识别,初赛数据集设计为封闭集,即测试集上需要识别的词语都在训练集中出现过,可视为一个多分类问题,决赛为线下黑客马拉松竞赛。

方案分享:

第一名:https://github.com/TimeChi/Lip_Reading_Competition

第六名:https://github.com/liuzhejun/XWbank_LipReading

国能日新第二届光伏功率预测赛

赛事方向:结构化数据

赛事简介:通过学习历史一段时间内的数值天气预测数据和对应的光伏发电功率训练模型,结合未来某时间点的数值天气预测数据,预测该时间点的光伏发电功率。

方案分享:

第25名:https://github.com/jsnuwjl/Photovoltaic_power

2019年“雅典娜杯”数据挖掘大赛邀请赛

赛事方向:结构化数据

赛事简介:通过运用数据挖掘技术和机器学习算法,针对赛题场景构建预测模型,输出预测结果,挖掘数据潜在价值。根据提供贷款用户的数据信息,建立准确的风险控制模型,预测用户未来是否会逾期还款。

方案分享:

第十四名:https://github.com/shaobo76/ydn2019

第十七名:https://github.com/Travisgogogo/2019-ABC-Athena

2019厦门国际银行“数创金融杯”数据建模大赛

赛事方向:结构化数据

赛事简介:信用风险是金融监管机构重点关注的风险,关乎金融系统运行的稳定。在实际业务开展和模型构建过程中,面临着高维稀疏特征以及样本不平衡等各种问题,如何应用机器学习等数据挖掘方法提高信用风险的评估和预测能力,是各家金融机构积极探索的方向。本次竞赛提供实际业务场景中的信贷数据作为建模的对象,希望能借此展现各参赛选手数据挖掘的实战能力。

方案分享:

baseline:https://github.com/shenxiangzhuang/Bank-Competition

第六名:https://github.com/yanqiangmiffy/Data-Finance-Cup

美国King County房价预测训练赛

赛事方向:结构化数据

赛事简介:从给定的房屋基本信息以及房屋销售信息等,建立一个回归模型预测房屋的销售价格。

方案分享:

baseline:https://github.com/bingshen/KingCounty

员工离职预测训练赛

赛事方向:结构化数据

赛事简介:从给定的影响员工离职的因素和员工是否离职的记录,建立一个逻辑回归模型预测有可能离职的员工。

方案分享:

baseline:https://github.com/bingshen/DataCastle--

北京PM2.5浓度回归分析训练赛

赛事方向:结构化数据

赛事简介:由给定一段时间内的北京天气相关指数数据和北京PM2.5指数等,建立模型预测接下来一段时间内北京的PM2.5指数。

方案分享:

第一名:https://tianchi.aliyun.com/notebook-ai/detail?postId=83259

第二名:https://tianchi.aliyun.com/forum/postDetail?postId=83611

第三名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.3.78057195OwI8lK&postId=83701

轴承故障检测

赛事方向:结构化数据

赛事简介:轴承有3种故障:外圈故障,内圈故障,滚珠故障,外加正常的工作状态。如表1所示,结合轴承的3种直径(直径1,直径2,直径3),轴承的工作状态有10类,参赛选手需要设计模型根据轴承运行中的振动信号对轴承的工作状态进行分类。

方案分享:

第35名:https://github.com/zhangxiaoling/Bearing-fault-detection

识别失信企业大赛

赛事方向:结构化数据

赛事简介:根据企业的注册登记信息、缴税、资产负债表信息,判断企业是否为失信企业。

方案分享:

baseline:https://github.com/jiahengqi/datacastle_shixin

城市交通流量时空预测

赛事方向:结构化数据

赛事简介:根据企业的注册登记信息、缴税、资产负债表信息,判断企业是否为失信企业。

方案分享:

baseline:https://github.com/jiahengqi/datacastle_shixin

Context-Aware Multi-Modal Transportation Recommendation

赛事方向:结构化数据

赛事简介:The challenge will address the context-aware multi-modal transportation recommendation problem. Given a user u an OD pair and the situational context, it is requested to recommend the most proper transport mode m ∈ M for user u to travel between the OD pair od.

方案分享:

第二名:https://mp.weixin.qq.com/s/CHLxzXo2dV6RY-JVam510w

第二届中国“高分杯”美丽乡村大赛

赛事方向:计算机视觉

赛事简介:赛事数据来源于某一时刻一张遥感卫星多光谱图像,覆盖850公里*300公里。要求参赛队利用深度学习等智能算法自动识别出所给图像对应的农作物,包括玉米、大豆、水稻三种农作物区块和其他区块共四种区块,根据参赛团队对场景的识别准确度和时效性进行评分。

方案分享:

第一名:https://blog.csdn.net/nima1994/article/details/89849773

其他:https://github.com/lsh1994/tianchiorgame/tree/master/dianshi_gaofenbei_1901

Urban Region Function Classification

赛事方向:结构化数据

赛事简介:Jointly organized by the International Knowledge Centre for Engineering Sciences and Technology under the Auspices of UNESCO (IKCEST), China Knowledge Centre for Engineering Sciences and Technology(CKCEST), Baidu and Xi’an Jiaotong University (XJTU), the big data algorithm contest aims to identify top talents through the contest format in the global big data and artificial intelligence sector, particularly the talents from “The Belt and Road” countries, in an effort to help the Government, Industry, and Higher Education Institutions jointly drive the research, application and development of the big data industry, consolidate the contest’s theoretical and practical foundations and accelerate the nurturing of innovative AI talents.

方案分享:

第二名:https://github.com/zhuqunxi/Urban-Region-Function-Classification

短视频内容理解与推荐竞赛

赛事方向:结构化数据

赛事简介:本次竞赛提供多模态的短视频内容特征,包括视觉特征、文本特征和音频特征,同时提供了脱敏后的用户点击、喜爱、关注等交互行为数据。参赛者需要通过一个视频及用户交互行为数据集对用户兴趣进行建模,然后预测该用户在另一视频数据集上的点击行为。竞赛最终根据参赛者提交的模型和预测结果,依据评分进行排名,具体见评估准则。

方案分享:

官方baseline:https://github.com/challenge-ICME2019-Bytedance/Bytedance_ICME_challenge

第八名:https://www.zhuanzhi.ai/document/57000873027e2910fd452f42c90b2104

2019 搜狐校园算法大赛

赛事方向:自然语言处理

赛事简介:给定若干文章,目标是判断文章的核心实体以及对核心实体的情感态度。每篇文章识别最多三个核心实体,并分别判断文章对上述核心实体的情感倾向(积极、中立、消极三种)。

方案分享:

第十名:https://github.com/lmhgithi/2019-sohu-finals

其他:https://github.com/LLouice/Sohu2019

“达观杯”文本智能信息抽取挑战赛

赛事方向:自然语言处理

赛事简介:大赛提供的是一个全新的数据集,旨在促进不同领域下文档多字段的抽取任务研究。我们将评估参赛选手在预测集上识别这三个类型字段的能力。此外我们还提供一个大规模的未标注预料供参赛选手预训练语言模型。

方案分享:

第一名:https://zhuanlan.zhihu.com/p/84717061

第九名:https://github.com/lonePatient/daguan_2019_rank9

十强答辩ppt下载地址:https://pan.baidu.com/s/1yvXFf5GzyvDksdBKNp9FKQ 提取码: svr2

智源&计算所-互联网虚假新闻检测挑战赛

赛事方向:自然语言处理

赛事简介:为应对当前虚假新闻泛滥的现状,将虚假新闻带来的危害最小化,我们设立此赛题以促进对虚假新闻自动化检测方法的研究。针对虚假新闻的特点,我们设立了三个子任务:虚假新闻文本检测、虚假新闻图片检测、虚假新闻多模态检测。

方案分享:

第一名:https://www.biendata.com/models/category/3529/L_notebook/

其他:https://github.com/deping-1/2019-false-news-detection-challenge

DigSci 科学数据挖掘大赛 2019

赛事方向:自然语言处理

赛事简介:本次比赛将提供一个论文库(约含20万篇论文),同时提供对论文的描述段落,来自论文中对同类研究的介绍。参赛选手需要为描述段落匹配三篇最相关的论文。

方案分享:

冠军:https://zhuanlan.zhihu.com/p/88664963

亚军:https://zhuanlan.zhihu.com/p/88257675

OAG-WhoIsWho

【论文的增量消歧】

赛事方向:自然语言处理

赛事简介:线上系统每天会新增大量的论文,如何准确快速的将论文分配到系统中已有作者档案,这是线上学术系统最亟待解决的问题。所以问题抽象定义为:给定一批新增论文以及系统已有的作者论文集,最终目的是把新增论文分配到正确的作者档案中。

方案分享:

第五名:https://biendata.com/models/detail/3599/L_notebook/

【论文的冷启动消歧】

赛事方向:自然语言处理

赛事简介:给定一堆拥有同名作者的论文,要求返回一组论文聚类,使得一个聚类内部的论文都是一个人的,不同聚类间的论文不属于一个人。最终目的是识别出哪些同名作者的论文属于同一个人。

方案分享:

第六名:https://biendata.com/models/detail/3598/L_notebook/

第七名:https://zhuanlan.zhihu.com/p/97171241

其他:https://www.ctolib.com/YanYangB-disambiguation.html

智源 - 看山杯 专家发现算法大赛 2019

赛事方向:结构化数据

赛事简介:比赛将提供知乎的问题信息、用户画像、用户回答记录,以及用户接受邀请的记录,要求选手预测这个用户是否会接受某个新问题的邀请。

方案分享:

Baseline: https://biendata.com/models/detail/2897/L_notebook/

智联招聘人岗智能匹配

赛事方向:计算机视觉

赛事简介:本赛场聚焦布匹疵点智能检测,要求选手研究开发高效可靠的计算机视觉算法,提升布匹疵点检验的准确度,降低对大量人工的依赖,提升布样疵点质检的效果和效率。要求算法既要检测布匹是否包含疵点,又要给出疵点具体的位置和类别,既考察疵点检出能力、也考察疵点定位和分类能力。

方案分享:

第一名:https://tianchi.aliyun.com/notebook-ai/detail?postId=83259

第二名:https://tianchi.aliyun.com/forum/postDetail?postId=83611

第三名:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.3.78057195OwI8lK&postId=83701

往期精彩回顾




适合初学者入门人工智能的路线及资料下载机器学习在线手册深度学习在线手册AI基础下载(pdf更新到25集)备注:加入本站微信群或者qq群,请回复“加群”获取一折本站知识星球优惠券,请回复“知识星球”

喜欢文章,点个在看

  • 5
    点赞
  • 4
    评论
  • 53
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值