【深度学习】去掉softmax后Transformer会更好吗?复旦&华为诺亚提出SOFT:轻松搞定线性近似...

作者丨happy  编辑丨极市平台

导读

 

本文介绍了复旦大学&华为诺亚提出的一种新颖的softmax-free的Transformer—SOFT。所提SOFT显著改善了现有ViT方案的计算效率,更为关键的是:SOFT的线性复杂度可以允许更长的token序列,进而取得更佳的精度-复杂度均衡。

1121dcb7a061554840bb34e746bf6461.png

论文链接:https://arxiv.org/pdf/2110.11945.pdf

代码链接:https://github.com/fudan-zvg/SOFT

项目链接:https://fudan-zvg.github.io/SOFT/

本文是复旦大学&华为诺亚关于Transformer中自注意力机制复杂度的深度思考,首次提出了一种新颖的softmax-free 的Transformer 。本文从softmax self-attention局限性出发,分析了其存在的挑战;然后由此提出了线性复杂度的SOFT;再针对线性SOFT存在的训练问题,提出了一种具有理论保证的近似方案。所提SOFT在ImageNet分类任务上取得了比已有CNN、Transformer更佳的精度-复杂度均衡。

Abstract

ViT通过图像块序列化+自注意力机制将不同CV任务性能往前推了一把。然而,自注意力机制会带来更高的计算复杂度与内存占用。在NLP领域已有不同的方案尝试采用线性复杂度对自注意力进行近似。然而,本文的深入分析表明:NLP中的近似方案在CV中缺乏理论支撑或者无效。

我们进一步分析了其局限性根因:softmax self-attention 。具体来说,传统自注意力通过计算token之间的点乘并归一化得到自注意力。softmax操作会对后续的线性近似带来极大挑战。基于该发现,本文首次提出了SOFT(softmax-free transformer )。

为移除自注意力中的softmax,我们采用高斯核函数替代点乘相似性且无需进一步的归一化。这就使得自注意力矩阵可以通过低秩矩阵分析近似 。近似的鲁棒性可以通过计算其MP逆(Moore-Penrose Inverse)得到。

ImageNet数据集上的实验结果表明:所提SOFT显著改善了现有ViT方案的计算效率 。更为关键的是:SOFT的线性复杂度可以允许更长的token序列,进而取得更佳的精度-复杂度均衡。

Contributation

本文的贡献主要包含以下几点:

  • 提出一种新颖的线性空间、时间复杂度softmax-free Transformer

  • 所提注意力矩阵近似可以通过具有理论保证的矩阵分解算法 计算得到;

  • 所提SOFT在ImageNet图像分类任务上取得了比其他ViT方案更佳的精度-复杂度均衡 (见下图a)。

9256067e70ca0052f00a7002bcdb0cc5.png

Method

Softmax-free self-attention formulation

c301262996904c72d21e4880073a9ace.png

上图给出了本文所提SOFT架构示意图。我们首先来看一下该注意力模块的设计。给定包含n个token的输入序列,自注意力旨在挖掘所有token对之间的相关性

具体来说,X首先线性投影为三个维的query、key以及values:

自注意力可以表示为如下广义形式:

自注意力的关键函数包含一个非线性函数与一个相关函数。自注意力的常规配置定义如下:

虽然该softmax自注意力已成为首选且很少受到质疑,但是它并不适合进行线性化。为构建线性自注意力设计,我们引入了一种sfotmax-free自注意力函数:通过高斯核替换点乘操作。定义如下:

为保持注意力矩阵的对称性,我们设置投影矩阵相同,即。所提自注意力矩阵定义如下:

为描述的简单性,我们定义为矩阵形式:。所提自注意力矩阵S具有三个重要属性:

  • 对称性

  • 所有元素均在[0,1]范围内;

  • 所有对角元素具有最大值1。

我们发现:当采用无线性化的核自注意力矩阵时,transformer的训练难以收敛 。这也就解释了:为何softmax自注意力在transformer中如此流行。

Low-rank regularization via matrix decomposition with linear complxity

为解决收敛于二次复杂度问题,我们利用了矩阵分解作为带低秩正则的统一解,这就使得模型复杂度大幅下降,且无需计算全部的自注意力矩阵。

作出上述选择因为在于:S为半正定矩阵,且无需后接归一化。我们将S表示为块矩阵形式:

其中,。通过上述分解,注意力矩阵可以近似表示为:

其中,表示A的MP逆。更多关于MP逆的信息建议查看原文,这里略过。

在上述公式,A和B是S通过随机采样m个token得到的子矩阵,可表示为(我们将其称之为bottleneck token )。然而,我们发现:随机采样对于m非常敏感。因此,我们通过利用结构先验探索两种额外的方案:

  • 采用一个核尺寸为k、stride为k的卷积学习;

  • 采用一个核尺寸为k、stride为k的均值池化生成。

通过实验对比发现:卷积层学习 具有更好的精度 。由于K与Q相等,因此。给定m个token,我们计算A和P:

最终,我们得到了SOFT的正则化后的自注意力矩阵:

03694eaa8cc38476f53526538fa2c72e.png

上图Algorithm1给出所提SOFT流程,它涉及到了MP逆计算。一种精确且常用的计算MP逆的方法是SVD,然而SVD对于GPU训练不友好。为解决该问题,我们采用了Newton-Raphson方法,见上图Algorithm2:一种迭代算法。与此同时,作者还给出了上述迭代可以最终收敛到MP逆的证明。对该证明感兴趣的同时强烈建议查看原文公式,哈哈。

Instantiations

上面主要聚焦于softmax-free self-attention 模块的介绍,接下来我们将介绍如何利用SOFT模块构建Transformer模型。我们以图像分类任务为切入点,以PVT作为基础架构并引入所提SOFT模块构建最终的SOFT模型,同时还在stem部分进行了微小改动。下表给出了本文所提方案在不同容量大小下的配置信息。

0e92faa9c68879b257d71fe18745e703.png

Experiments

19b429dbb4c67428a0fe21e0b8954649.png

上表对比了所提方案与现有线性Transformer模型的性能,从中可以看到:

  • 相比基线Transformer,线性Transformer能够大幅降低内存占用与FLOPs,同时保持相当参数量;

  • 所提SOFT在所有线性方案中取得了最佳分类精度;

  • 所提SOFT与其他线性方案的推理速度相当,训练速度稍慢。

776d08231aab1990d945ab96a9f1e060.png

上图给出了不同方案的序列长度与内存占用之间的关系,从中可以看到:所提SOFT确实具有线性复杂度的内存占用

f4b1f5d51dfd7e269adbae5f3dce7424.png

上表给出了所提方案与其他CNN、Transformer的性能对比,从中可以看到:

  • 总体来说,ViT及其变种具有比CNN更高的分类精度;

  • 相比ViT、DeiT等Transformer方法以及RegNet等CNN方法,所提SOFT取得了最佳性能;

  • 相比PVT,所提方案具有更高的分类精度,直接验证了所提SOFT模块的有效性;

  • 相比Twins与Swin,所提SOFT具有相当的精度,甚至更优性能。

4fc05596a926ebb54c35b0dae7eec771.png

此外,作者还在NLP任务上进行了对比,见上表,很明显:SOFT又一次胜出

312ef073b0a52cf21bc40678fd1b145c.png

 
 
 
 
 
 
 
 
往期精彩回顾




适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载黄海广老师《机器学习课程》视频课黄海广老师《机器学习课程》711页完整版课件

本站qq群554839127,加入微信群请扫码:

5b879a9833362af22748bbe8312b48a2.png

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值