【Python】pandas 行列转换的 2 个常用技巧!

本次给大家介绍关于pandas 行列转换2个常用技巧。

在我们处理数据的过程中,经常会遇到这样的情况。

f5b55428d5c920bf89284fc57720d8a8.png

工作中,比如用户画像的数据中也会遇到,客户使用的app类型就会以这种长列表的形式或者以逗号隔开的字符串形式展现出来。

那么面对这样的数据格式,我们希望把它转换为结构化的表,脑海中想象的是下面这种格式。

4c5bd1429c2076dafcc3b701bed1e951.jpeg

使用pandas如何实现呢?

一、直接explode

其实非常简单,使用explode这个 爆炸” 方法即可,东哥平时喜欢叫它爆炸。其实,这个和hive中的lateral view explode有异曲同工的效果,也就是列转行” 的功能。

仍用上面这个例子,要达到想要的效果,只需要这么做。

df.explode('爱好')

10bc40864d54fd2e0854ccbc4f8c457c.jpeg

看到爱好这个字段被爆炸开了,列表里所有特征都被转换为对应程序员的行数据。

但列表有重复的值,就可能导致爆炸出来的行存在重复行,如上面小码哥出现了两次敲代码。所以一般我们会在后面跟一个去重的方法。

df.explode('爱好').drop_duplicates()

dbf3e504120f57049cca25630458c76d.png

二、explode不能直接处理的

但是,explode这个爆炸方法只能处理列表元组Seriesnumpyndarray的类型。

如果面对下面这种格式,该如何爆炸?

9bf0dc5feeed2b7cccdc41f9fd1ce8fc.png

其实也不难,只要运用一个小技巧即可,就是Series.str.split()分割字符串的方法来创建列表。

df["爱好"] = df["爱好"].str.split()

df8326ec50cdb90a65b49e894bb4b4c1.png

然后,我们再用explode爆炸就完事了。

以上就是本次关于 列转行 的2个骚操作分享。


 
 

c40d3b1915835671c713815d97de8468.jpeg

 
 
 
 
 
 
 
 
往期精彩回顾




适合初学者入门人工智能的路线及资料下载(图文+视频)机器学习入门系列下载机器学习及深度学习笔记等资料打印《统计学习方法》的代码复现专辑机器学习交流qq群772479961,加入微信群请扫码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值