【深度学习】CNN网络结构的发展——看懂这一篇就够了

本文约3000字,建议阅读10分钟
本文为你介绍CNN的基本部件及经典网络结构。

CNN的全称是"Convolutional Neural Network"(卷积神经网络)。而神经网络是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)结构和功能的数学模型或计算模型。

作者丨zzq@知乎

链接丨https://zhuanlan.zhihu.com/p/68411179

一、CNN基本部件介绍

1. 局部感受野

在图像中局部像素之间的联系较为紧密,而距离较远的像素联系相对较弱。因此,其实每个神经元没必要对图像全局进行感知,只需要感知局部信息,然后在更高层局部信息综合起来即可得到全局信息。卷积操作即是局部感受野的实现,并且卷积操作因为能够权值共享,所以也减少了参数量。

2. 池化

池化是将输入图像进行缩小,减少像素信息,只保留重要信息,主要是为了减少计算量。主要包括最大池化和均值池化。

3. 激活函数

激活函数的用是用来加入非线性。常见的激活函数有sigmod, tanh, relu,前两者常用在全连接层,relu常见于卷积层。

4.全连接层

全连接层在整个卷积神经网络中起分类器的作用。在全连接层之前需要将之前的输出展平。

二、经典网络结构

1. LeNet5

由两个卷积层,两个池化层,两个全连接层组成。卷积核都是5×5,stride=1,池化层使用maxpooling。

62f1794961e496c4eff7bfeb0d7fb0e9.jpeg 2. AlexNet

模型共八层(不算input层),包含五个卷积层、三个全连接层。最后一层使用softmax做分类输出

AlexNet使用了ReLU做激活函数;防止过拟合使用dropout和数据增强;双GPU实现;使用LRN。

53a7b75116cc1b329b111fd31aa494ad.jpeg 0ed7228aa87e30ac3fd60fc0f938d52a.jpeg 3. VGG

全部使用3×3卷积核的堆叠,来模拟更大的感受野,并且网络层数更深。VGG有五段卷积,每段卷积后接一层最大池化。卷积核数目逐渐增加。

总结:LRN作用不大;越深的网络效果越好;1×1的卷积也很有效但是没有3×3好。

b22600d1e348916686efef351c4c99f2.jpeg

4. GoogLeNet(inception v1)

从VGG中我们了解到,网络层数越深效果越好。但是随着模型越深参数越来越多,这就导致网络比较容易过拟合,需要提供更多的训练数据;另外,复杂的网络意味更多的计算量,更大的模型存储,需要更多的资源,且速度不够快。GoogLeNet就是从减少参数的角度来设计网络结构的。

GoogLeNet通过增加网络宽度的方式来增加网络复杂度,让网络可以自己去应该如何选择卷积核。这种设计减少了参数 ,同时提高了网络对多种尺度的适应性。使用了1×1卷积可以使网络在不增加参数的情况下增加网络复杂度。

c3a298625da6e898b2bad577501ae81e.jpeg

Inception-v2

在v1的基础上加入batch normalization技术,在tensorflow中,使用BN在激活函数之前效果更好;将5×5卷积替换成两个连续的3×3卷积,使网络更深,参数更少

Inception-v3

核心思想是将卷积核分解成更小的卷积,如将7×7分解成1×7和7×1两个卷积核,使网络参数减少,深度加深

Inception-v4结构

引入了ResNet,使训练加速,性能提升。但是当滤波器的数目过大(>1000)时,训练很不稳定,可以加入activate scaling因子来缓解

5. Xception

在Inception-v3的基础上提出,基本思想是通道分离式卷积,但是又有区别。模型参数稍微减少,但是精度更高。Xception先做1×1卷积再做3×3卷积,即先将通道合并,再进行空间卷积。depthwise正好相反,先进行空间3×3卷积,再进行通道1×1卷积。核心思想是遵循一个假设:卷积的时候要将通道的卷积与空间的卷积进行分离。而MobileNet-v1用的就是depthwise的顺序,并且加了BN和ReLU。Xception的参数量与Inception-v3相差不大,其增加了网络宽度,旨在提升网络准确率,而MobileNet-v1旨在减少网络参数,提高效率。

3f5e4744a5a3194b4e4b981a82e787ae.jpeg 4959f213252c479007656e2519d7e4be.jpeg

6. MobileNet系列

V1

使用depthwise separable convolutions;放弃pooling层,而使用stride=2的卷积。标准卷积的卷积核的通道数等于输入特征图的通道数;而depthwise卷积核通道数是1;还有两个参数可以控制,a控制输入输出通道数;p控制图像(特征图)分辨率。

f1ea5c58c7472bfa0fb8184d90545d8b.jpeg 9de75df247925d9fdafa2a6f3b866385.jpeg

V2

相比v1有三点不同:1.引入了残差结构;2.在dw之前先进行1×1卷积增加feature map通道数,与一般的residual block是不同的;3.pointwise结束之后弃用ReLU,改为linear激活函数,来防止ReLU对特征的破环。这样做是因为dw层提取的特征受限于输入的通道数,若采用传统的residual block,先压缩那dw可提取的特征就更少了,因此一开始不压缩,反而先扩张。但是当采用扩张-卷积-压缩时,在压缩之后会碰到一个问题,ReLU会破环特征,而特征本来就已经被压缩,再经过ReLU还会损失一部分特征,应该采用linear。

002158e857a9f7848109863df76898f1.jpeg 42b4a0716d44d002d3ae72d9b60663f5.jpeg

V3

互补搜索技术组合:由资源受限的NAS执行模块集搜索,NetAdapt执行局部搜索;网络结构改进:将最后一步的平均池化层前移并移除最后一个卷积层,引入h-swish激活函数,修改了开始的滤波器组。

V3综合了v1的深度可分离卷积,v2的具有线性瓶颈的反残差结构,SE结构的轻量级注意力模型。

192a097bf411ca7ddd6c835e518d8900.jpeg 4428483fcd3681217d104d48d8a58026.jpeg bfe9c0bf98f25f2421c98194829a984e.jpeg

7. EffNet

EffNet是对MobileNet-v1的改进,主要思想是:将MobileNet-1的dw层分解层两个3×1和1×3的dw层,这样 第一层之后就采用pooling,从而减少第二层的计算量。EffNet比MobileNet-v1和ShuffleNet-v1模型更小,进度更高。

8749723c8b9f71c1b22de3a510a745ac.jpeg 70a014bde002326f2777a9f6aad1184f.jpeg

8. EfficientNet

研究网络设计时在depth, width, resolution上进行扩展的方式,以及之间的相互关系。可以取得更高的效率和准确率。

f1f20bc630f7a2971ccd0473d082dcfb.jpeg

9. ResNet

VGG证明更深的网络层数是提高精度的有效手段,但是更深的网络极易导致梯度弥散,从而导致网络无法收敛。经测试,20层以上会随着层数增加收敛效果越来越差。ResNet可以很好的解决梯度消失的问题(其实是缓解,并不能真正解决),ResNet增加了shortcut连边。

a0049462b6a01866d24a84e69dcf58b9.jpeg

10. ResNeXt

基于ResNet和Inception的split+transform+concate结合。但效果却比ResNet、Inception、Inception-ResNet效果都要好。可以使用group convolution。一般来说增加网络表达能力的途径有三种:1.增加网络深度,如从AlexNet到ResNet,但是实验结果表明由网络深度带来的提升越来越小;2.增加网络模块的宽度,但是宽度的增加必然带来指数级的参数规模提升,也非主流CNN设计;3.改善CNN网络结构设计,如Inception系列和ResNeXt等。且实验发现增加Cardinatity即一个block中所具有的相同分支的数目可以更好的提升模型表达能力。

4551a5c784bcacd4525e21afc3568bef.jpeg 26dc0f50129af9c644fff2d22c34065e.jpeg

11. DenseNet

DenseNet通过特征重用来大幅减少网络的参数量,又在一定程度上缓解了梯度消失问题。

2e18bf1be40cef1ed41d7fd70b4b2742.jpeg

12. SqueezeNet

提出了fire-module:squeeze层+expand层。Squeeze层就是1×1卷积,expand层用1×1和3×3分别卷积,然后concatenation。squeezeNet参数是alexnet的1/50,经过压缩之后是1/510,但是准确率和alexnet相当。

ca0bfae4e672ca8b4d25ca742e717fc7.jpeg

13. ShuffleNet系列

V1

通过分组卷积与1×1的逐点群卷积核来降低计算量,通过重组通道来丰富各个通道的信息。Xception和ResNeXt在小型网络模型中效率较低,因为大量的1×1卷积很耗资源,因此提出逐点群卷积来降低计算复杂度,但是使用逐点群卷积会有副作用,故在此基础上提出通道shuffle来帮助信息流通。虽然dw可以减少计算量和参数量,但是在低功耗设备上,与密集的操作相比,计算、存储访问的效率更差,故shufflenet上旨在bottleneck上使用深度卷积,尽可能减少开销。

10d10309291b96e7eb60f49aef5c0125.jpeg

V2

使神经网络更加高效的CNN网络结构设计准则:

  • 输入通道数与输出通道数保持相等可以最小化内存访问成本;

  • 分组卷积中使用过多的分组会增加内存访问成本;

  • 网络结构太复杂(分支和基本单元过多)会降低网络的并行程度;

  • element-wise的操作消耗也不可忽略。

f7af0cfbb6a2067d7a73093afd47b6fd.jpeg

14. SENet

9221addda0fc4aa4261ac99e72502dac.jpeg

15. SKNet

7a81947a7a6e2c4132842a91e1908526.jpeg

编辑:黄继彦

 
 

073c8c892f8c5a7cde7ee665b3bc16ce.jpeg

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
往期精彩回顾




适合初学者入门人工智能的路线及资料下载(图文+视频)机器学习入门系列下载机器学习及深度学习笔记等资料打印《统计学习方法》的代码复现专辑
  • 交流群

欢迎加入机器学习爱好者微信群一起和同行交流,目前有机器学习交流群、博士群、博士申报交流、CV、NLP等微信群,请扫描下面的微信号加群,备注:”昵称-学校/公司-研究方向“,例如:”张小明-浙大-CV“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~(也可以加入机器学习交流qq群772479961)

9acfeeb1a62f125021d0ca2ebcbf3c61.png

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值