【深度学习】视觉Transformer解析

自2017年“注意力就是一切”的理念问世以来,Transformer模型便迅速在自然语言处理(NLP)领域崭露头角,确立了其领先地位。到了2021年,“一张图片等于16x16个单词”的理念成功将Transformer模型引入计算机视觉任务中。自此之后,众多基于Transformer的架构纷纷涌现,应用于计算机视觉领域。

本文将详细介绍“一张图片等于16x16个单词”中阐述的Vision Transformer(ViT),包括其开源代码和对各组件的概念解释。所有代码均使用PyTorch Python包实现。

本文作为一系列深入研究Vision Transformers内部工作原理的文章之一,提供了可执行代码的Jupyter Notebook版本。系列中的其他文章还包括:Vision Transformers解析、注意力机制在Vision Transformers中的应用、Vision Transformers的位置编码解析、Tokens-to-Token Vision Transformers解析以及Vision Transformers解析系列的GitHub仓库等。

那么,什么是Vision Transformers呢?正如“注意力就是一切”所介绍的,Transformer是一种利用注意力机制作为主要学习机制的机器学习模型。它迅速成为序列到序列任务(如语言翻译)的领先技术。

“一张图片等于16x16个单词”成功地改进了[1]中提出的Transformer,使其能够应对图像分类任务,从而催生了Vision Transformer(ViT)。ViT与[1]中的Transformer一样,基于注意力机制。不过,与用于NLP任务的Transformer包含编码器和解码器两个注意力分支不同,ViT仅使用编码器。编码器的输出随后传递给神经网络“头”进行预测。

然而,“一张图片等于16x16个单词”中实现的ViT存在一个缺点,即其最佳性能需要在大型数据集上进行预训练。最佳模型是在专有的JFT-300M数据集上预训练的。而在较小的开源ImageNet-21k数据集上进行预训练的模型,其性能与最先进的卷积ResNet模型相当。

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet则试图通过引入一种新颖的预处理方法,将输入图像转换为一系列token,从而消除这种预训练要求。有关此方法的更多信息,请查阅相关资料。在本文中,我们将重点讨论“一张图片等于16x16个单词”中实现的ViT。

 模型解析

本文遵循《一张图片等于16x16个单词》中概述的模型结构。然而,该论文的代码并未公开发布。最近的《Tokens-to-Token ViT》中的代码可在GitHub上找到。Tokens-to-Token ViT(T2T-ViT)模型在普通ViT骨干结构前添加了一个Tokens-to-Token(T2T)模块。本文中的代码基于《Tokens-to-Token ViT》GitHub代码中的ViT组件。本文对代码进行了修改,以允许非方形输入图像,并移除了dropout层。

ViT模型的结构示意图如下所示。

f60f86aa1545d155d7a6e354fd34a70b.jpeg

ViT模型示意图

图像Token化

ViT的第一步是从输入图像创建Token。Transformer操作的是一系列Token;在NLP中,这通常是一个句子的单词。对于计算机视觉来说,如何将输入分段成Token并不太明确。
ViT将图像转换为Token,以便每个Token表示图像的一个局部区域(或补丁)。他们描述了如何将高度H、宽度W和通道数C的图像重新塑造为N个补丁大小为P的Token:

每个Token的长度为P²*C。
让我们以此像素艺术《黄昏下的山》(作者Luis Zuno)为例进行补丁Token化。原始艺术品已被裁剪并转换为单通道图像。这意味着每个像素的值在0到1之间。单通道图像通常以灰度显示,但我们将以紫色配色方案显示它,因为这样更容易看到。请注意,补丁Token化不包括在[3]相关的代码中。

mountains = np.load(os.path.join(figure_path, 'mountains.npy'))


H = mountains.shape[0]
W = mountains.shape[1]
print('Mountain at Dusk is H =', H, 'and W =', W, 'pixels.')
print('\n')


fig = plt.figure(figsize=(10,6))
plt.imshow(mountains, cmap='Purples_r')
plt.xticks(np.arange(-0.5, W+1, 10), labels=np.arange(0, W+1, 10))
plt.yticks(np.arange(-0.5, H+1, 10), labels=np.arange(0, H+1, 10))
plt.clim([0,1])
cbar_ax = fig.add_axes([0.95, .11, 0.05, 0.77])
plt.clim([0, 1])
plt.colorbar(cax=cbar_ax);
#plt.savefig(os.path.join(figure_path, 'mountains.png'))
Mountain at Dusk is H = 60 and W = 100 pixels.

37d5b3b067db595f31312d00d14ea05b.jpeg

这个图像的高度为H=60,宽度为W=100。我们将设置P=20,因为它能够均匀地整除H和W。

P = 20
N = int((H*W)/(P**2))
print('There will be', N, 'patches, each', P, 'by', str(P)+'.')
print('\n')


fig = plt.figure(figsize=(10,6))
plt.imshow(mountains, cmap='Purples_r')
plt.hlines(np.arange(P, H, P)-0.5, -0.5, W-0.5, color='w')
plt.vlines(np.arange(P, W, P)-0.5, -0.5, H-0.5, color='w')
plt.xticks(np.arange(-0.5, W+1, 10), labels=np.arange(0, W+1, 10))
plt.yticks(np.arange(-0.5, H+1, 10), labels=np.arange(0, H+1, 10))
x_text = np.tile(np.arange(9.5, W, P), 3)
y_text = np.repeat(np.arange(9.5, H, P), 5)
for i in range(1, N+1):
    plt.text(x_text[i-1], y_text[i-1], str(i), color='w', fontsize='xx-large', ha='center')
plt.text(x_text[2], y_text[2], str(3), color='k', fontsize='xx-large', ha='center');
#plt.savefig(os.path.join(figure_path, 'mountain_patches.png'), bbox_inches='tight'
There will be 15 patches, each 20 by 20.

c338edfe8a8f5985c957746c3657abf2.jpeg

通过将这些补丁展平,我们可以看到生成的Token。让我们以第12个补丁为例,因为它包含了四种不同的色调。

print('Each patch will make a token of length', str(P**2)+'.')
print('\n')


patch12 = mountains[40:60, 20:40]
token12 = patch12.reshape(1, P**2)


fig = plt.figure(figsize=(10,1))
plt.imshow(token12, aspect=10, cmap='Purples_r')
plt.clim([0,1])
plt.xticks(np.arange(-0.5, 401, 50), labels=np.arange(0, 401, 50))
plt.yticks([]);
#plt.savefig(os.path.join(figure_path, 'mountain_token12.png'), bbox_inches='tight')
Each patch will make a token of length 400.

be882b0c0fa52afc407407d727361b70.jpeg

从图像中提取Token后,通常会使用线性投影来改变Token的长度。这通过一个可学习的线性层来实现。新的Token长度被称为潜在维度、通道维度或Token长度。在投影之后,Token不再能够在视觉上被识别为原始图像的补丁。现在我们理解了这个概念,我们可以看看补丁Token化是如何在代码中实现的。

class Patch_Tokenization(nn.Module):
    def __init__(self,
                img_size: tuple[int, int, int]=(1, 1, 60, 100),
                patch_size: int=50,
                token_len: int=768):


        """ Patch Tokenization Module
            Args:
                img_size (tuple[int, int, int]): size of input (channels, height, width)
                patch_size (int): the side length of a square patch
                token_len (int): desired length of an output token
        """
        super().__init__()


        ## Defining Parameters
        self.img_size = img_size
        C, H, W = self.img_size
        self.patch_size = patch_size
        self.token_len = token_len
        assert H % self.patch_size == 0, 'Height of image must be evenly divisible by patch size.'
        assert W % self.patch_size == 0, 'Width of image must be evenly divisible by patch size.'
        self.num_tokens = (H / self.patch_size) * (W / self.patch_size)


        ## Defining Layers
        self.split = nn.Unfold(kernel_size=self.patch_size, stride=self.patch_size, padding=0)
        self.project = nn.Linear((self.patch_size**2)*C, token_len)


    def forward(self, x):
        x = self.split(x).transpose(1,0)
        x = self.project(x)
        return x

请注意两个断言语句,确保图像的尺寸可以被补丁大小整除。实际的补丁划分是通过一个torch.nn.Unfold⁵层实现的。

我们将使用我们裁剪的单通道版本的Mountain at Dusk⁴来运行此代码的示例。我们应该看到与之前相同的Token数量和初始Token大小的值。我们将使用token_len=768作为投影长度,这是基本变体的ViT²的大小。

下面代码块中的第一行是将Mountain at Dusk⁴的数据类型从NumPy数组更改为Torch张量。我们还必须对张量进行unsqueeze⁶操作,以创建一个通道维度和一个批处理大小维度。与上面一样,我们只有一个通道。由于只有一个图像,批处理大小为1。

x = torch.from_numpy(mountains).unsqueeze(0).unsqueeze(0).to(torch.float32)
token_len = 768
print('Input dimensions are\n\tbatchsize:', x.shape[0], '\n\tnumber of input channels:', x.shape[1], '\n\timage size:', (x.shape[2], x.shape[3]))


# Define the Module
patch_tokens = Patch_Tokenization(img_size=(x.shape[1], x.shape[2], x.shape[3]),
                                    patch_size = P,
                                    token_len = token_len)
Input dimensions are
   batchsize: 1 
   number of input channels: 1 
   image size: (60, 100)

现在,我们将图像分成Token。

x = patch_tokens.split(x).transpose(2,1)
print('After patch tokenization, dimensions are\n\tbatchsize:', x.shape[0], '\n\tnumber of tokens:', x.shape[1], '\n\ttoken length:', x.shape[2])
After patch tokenization, dimensions are
   batchsize: 1 
   number of tokens: 15 
   token length: 400

正如我们在示例中看到的那样,共有N=15个长度为400的Token。最后,我们将Token投影为token_len。

x = patch_tokens.split(x).transpose(2,1)
print('After patch tokenization, dimensions are\n\tbatchsize:', x.shape[0], '\n\tnumber of tokens:', x.shape[1], '\n\ttoken length:', x.shape[2])
After patch tokenization, dimensions are
   batchsize: 1 
   number of tokens: 15 
   token length: 400

现在我们有了Token,我们准备继续进行ViT。

Token Processing

我们将把ViT的下两个步骤,即编码块之前的步骤,称为“Token处理”。ViT图中的Token处理组件如下所示。

74ac94cfc66bf9f5cd9cb6c98b848ba7.jpeg第一步是在图像Token之前添加一个空白Token,称为Prediction Token。此Token将用于输出编码块以进行预测。它最初是空白的 —— 等效于零 —— 这样它就可以从其他图像Token中获取信息。

# Define an Input
num_tokens = 175
token_len = 768
batch = 13
x = torch.rand(batch, num_tokens, token_len)
print('Input dimensions are\n\tbatchsize:', x.shape[0], '\n\tnumber of tokens:', x.shape[1], '\n\ttoken length:', x.shape[2])


# Append a Prediction Token
pred_token = torch.zeros(1, 1, token_len).expand(batch, -1, -1)
print('Prediction Token dimensions are\n\tbatchsize:', pred_token.shape[0], '\n\tnumber of tokens:', pred_token.shape[1], '\n\ttoken length:', pred_token.shape[2])


x = torch.cat((pred_token, x), dim=1)
print('Dimensions with Prediction Token are\n\tbatchsize:', x.shape[0], '\n\tnumber of tokens:', x.shape[1], '\n\ttoken length:', x.shape[2])
Input dimensions are
   batchsize: 13 
   number of tokens: 175 
   token length: 768
Prediction Token dimensions are
   batchsize: 13 
   number of tokens: 1 
   token length: 768
Dimensions with Prediction Token are
   batchsize: 13 
   number of tokens: 176 
   token length: 768

我们将从175个Token开始。每个Token的长度为768,这是ViT²基本变体的大小。我们使用批处理大小为13,因为它是素数,并且不会与任何其他参数混淆。

def get_sinusoid_encoding(num_tokens, token_len):
    """ Make Sinusoid Encoding Table


        Args:
            num_tokens (int): number of tokens
            token_len (int): length of a token
            
        Returns:
            (torch.FloatTensor) sinusoidal position encoding table
    """


    def get_position_angle_vec(i):
        return [i / np.power(10000, 2 * (j // 2) / token_len) for j in range(token_len)]


    sinusoid_table = np.array([get_position_angle_vec(i) for i in range(num_tokens)])
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) 


    return torch.FloatTensor(sinusoid_table).unsqueeze(0)


PE = get_sinusoid_encoding(num_tokens+1, token_len)
print('Position embedding dimensions are\n\tnumber of tokens:', PE.shape[1], '\n\ttoken length:', PE.shape[2])


x = x + PE
print('Dimensions with Position Embedding are\n\tbatchsize:', x.shape[0], '\n\tnumber of tokens:', x.shape[1], '\n\ttoken length:', x.shape[2])
Position embedding dimensions are
   number of tokens: 176 
   token length: 768
Dimensions with Position Embedding are
   batchsize: 13 
   number of tokens: 176 
   token length: 768

现在,我们为我们的Token添加了一个位置嵌入。位置嵌入允许Transformer理解图像token的顺序。请注意,这是一个增加,而不是一个连接。位置嵌入的具体细节是一个值得讨论的话题,最好留到以后再说。

def get_sinusoid_encoding(num_tokens, token_len):
    """ Make Sinusoid Encoding Table


        Args:
            num_tokens (int): number of tokens
            token_len (int): length of a token
            
        Returns:
            (torch.FloatTensor) sinusoidal position encoding table
    """


    def get_position_angle_vec(i):
        return [i / np.power(10000, 2 * (j // 2) / token_len) for j in range(token_len)]


    sinusoid_table = np.array([get_position_angle_vec(i) for i in range(num_tokens)])
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) 


    return torch.FloatTensor(sinusoid_table).unsqueeze(0)


PE = get_sinusoid_encoding(num_tokens+1, token_len)
print('Position embedding dimensions are\n\tnumber of tokens:', PE.shape[1], '\n\ttoken length:', PE.shape[2])


x = x + PE
print('Dimensions with Position Embedding are\n\tbatchsize:', x.shape[0], '\n\tnumber of tokens:', x.shape[1], '\n\ttoken length:', x.shape[2])
Position embedding dimensions are
   number of tokens: 176 
   token length: 768
Dimensions with Position Embedding are
   batchsize: 13 
   number of tokens: 176 
   token length: 768

现在,我们的Token已经准备好进入编码块。

编码块

编码块是模型实际从图像标记中学习的地方。编码块的数量是用户设置的超参数。编码块的图表如下。

9b597c36a5551c5c95d97aea157c932b.jpeg

编码块的代码如下。

class Encoding(nn.Module):    def __init__(self,       dim: int,       num_heads: int=1,       hidden_chan_mul: float=4.,       qkv_bias: bool=False,       qk_scale: NoneFloat=None,       act_layer=nn.GELU,        norm_layer=nn.LayerNorm):                """ Encoding Block            Args:                dim (int): size of a single token                num_heads(int): number of attention heads in MSA                hidden_chan_mul (float): multiplier to determine the number of hidden channels (features) in the NeuralNet component                qkv_bias (bool): determines if the qkv layer learns an addative bias                qk_scale (NoneFloat): value to scale the queries and keys by;                                     if None, queries and keys are scaled by ``head_dim ** -0.5``                act_layer(nn.modules.activation): torch neural network layer class to use as activation                norm_layer(nn.modules.normalization): torch neural network layer class to use as normalization        """        super().__init__()        ## Define Layers        self.norm1 = norm_layer(dim)        self.attn = Attention(dim=dim,                            chan=dim,                            num_heads=num_heads,                            qkv_bias=qkv_bias,                            qk_scale=qk_scale)        self.norm2 = norm_layer(dim)        self.neuralnet = NeuralNet(in_chan=dim,                                hidden_chan=int(dim*hidden_chan_mul),                                out_chan=dim,                                act_layer=act_layer)    def forward(self, x):        x = x + self.attn(self.norm1(x))        x = x + self.neuralnet(self.norm2(x))        return x

num_heads 、qkv_bias和qk_scale参数定义了注意力模块组件。关于视觉转换器的注意力的深入研究留待下次再讨论。

hidden_ chan_mul和act_layer参数定义神经网络模块组件。激活层可以是任意⁷层。我们稍后torch.nn.modules.activation会详细介绍神经网络模块。

可以从任意⁸层中选择norm_layer torch.nn.modules.normalization。

现在,我们将逐步介绍图中的每个蓝色块及其附带的代码。我们将使用长度为 768 的 176 个标记。我们将使用批处理大小 13,因为它是素数,不会与任何其他参数混淆。我们将使用 4 个注意力头,因为它可以均匀划分标记长度;但是,您不会在编码块中看到注意力头维度。

# Define an Inputnum_tokens = 176token_len = 768batch = 13heads = 4x = torch.rand(batch, num_tokens, token_len)print('Input dimensions are\n\tbatchsize:', x.shape[0], '\n\tnumber of tokens:', x.shape[1], '\n\ttoken length:', x.shape[2])# Define the ModuleE = Encoding(dim=token_len, num_heads=heads, hidden_chan_mul=1.5, qkv_bias=False, qk_scale=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm)E.eval();
Input dimensions are   batchsize: 13    number of tokens: 176    token length: 768

现在,我们将通过一个规范层和一个注意力模块。编码块中的注意力模块是参数化的,因此它不会改变标记长度。在注意力模块之后,我们实现了第一个拆分连接。

y = E.norm1(x)print('After norm, dimensions are\n\tbatchsize:', y.shape[0], '\n\tnumber of tokens:', y.shape[1], '\n\ttoken size:', y.shape[2])y = E.attn(y)print('After attention, dimensions are\n\tbatchsize:', y.shape[0], '\n\tnumber of tokens:', y.shape[1], '\n\ttoken size:', y.shape[2])y = y + xprint('After split connection, dimensions are\n\tbatchsize:', y.shape[0], '\n\tnumber of tokens:', y.shape[1], '\n\ttoken size:', y.shape[2])
After norm, dimensions are   batchsize: 13    number of tokens: 176    token size: 768After attention, dimensions are   batchsize: 13    number of tokens: 176    token size: 768After split connection, dimensions are   batchsize: 13    number of tokens: 176    token size: 768

现在,我们经过另一个规范层,然后是神经网络模块。最后是第二个拆分连接。

z = E.norm2(y)
print('After norm, dimensions are\n\tbatchsize:', z.shape[0], '\n\tnumber of tokens:', z.shape[1], '\n\ttoken size:', z.shape[2])
z = E.neuralnet(z)
print('After neural net, dimensions are\n\tbatchsize:', z.shape[0], '\n\tnumber of tokens:', z.shape[1], '\n\ttoken size:', z.shape[2])
z = z + y
print('After split connection, dimensions are\n\tbatchsize:', z.shape[0], '\n\tnumber of tokens:', z.shape[1], '\n\ttoken size:', z.shape[2])
After norm, dimensions are
   batchsize: 13 
   number of tokens: 176 
   token size: 768
After neural net, dimensions are
   batchsize: 13 
   number of tokens: 176 
   token size: 768
After split connection, dimensions are
   batchsize: 13 
   number of tokens: 176 
   token size: 768

这就是单个编码块的全部内容!由于最终维度与初始维度相同,模型可以轻松地通过多个编码块传递Token,由深度超参数设置。

神经网络模块

神经网络(NN)模块是编码块的子组件。NN模块非常简单,由一个全连接层、一个激活层和另一个全连接层组成。激活层可以是任何torch.nn.modules.activation⁷层,作为模块的输入传递。NN模块可以配置为改变输入的形状,或者保持相同的形状。我们不会逐步介绍这个代码,因为神经网络在机器学习中很常见,而且不是本文的重点。然而,下面给出了NN模块的代码。

class NeuralNet(nn.Module):
    def __init__(self,
       in_chan: int,
       hidden_chan: NoneFloat=None,
       out_chan: NoneFloat=None,
       act_layer = nn.GELU):
        """ Neural Network Module


            Args:
                in_chan (int): number of channels (features) at input
                hidden_chan (NoneFloat): number of channels (features) in the hidden layer;
                                        if None, number of channels in hidden layer is the same as the number of input channels
                out_chan (NoneFloat): number of channels (features) at output;
                                        if None, number of output channels is same as the number of input channels
                act_layer(nn.modules.activation): torch neural network layer class to use as activation
        """


        super().__init__()


        ## Define Number of Channels
        hidden_chan = hidden_chan or in_chan
        out_chan = out_chan or in_chan


        ## Define Layers
        self.fc1 = nn.Linear(in_chan, hidden_chan)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_chan, out_chan)


    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x

预测处理

通过编码块后,模型必须做的最后一件事是进行预测。ViT图中的“预测处理”组件如下所示。

6f11b3cecaacd6404559d86b4ef095a7.jpeg


我们将查看该过程的每个步骤。我们将继续使用长度为768的176个Token。我们将使用批量大小为1来说明如何进行单个预测。批量大小大于1将会并行计算此预测。

# Define an Input
num_tokens = 176
token_len = 768
batch = 1
x = torch.rand(batch, num_tokens, token_len)
print('Input dimensions are\n\tbatchsize:', x.shape[0], '\n\tnumber of tokens:', x.shape[1], '\n\ttoken length:', x.shape[2])
Input dimensions are
   batchsize: 1 
   number of tokens: 176 
   token length: 768

首先,所有Token都通过一个norm层。

norm = nn.LayerNorm(token_len)
x = norm(x)
print('After norm, dimensions are\n\tbatchsize:', x.shape[0], '\n\tnumber of tokens:', x.shape[1], '\n\ttoken size:', x.shape[2])
After norm, dimensions are
   batchsize: 1 
   number of tokens: 1001 
   token size: 768

接下来,我们从其余Token中分离出预测Token。在编码块中,预测Token已经变得非零,并获取了关于我们输入图像的信息。我们将仅使用此预测Token来进行最终预测。

norm = nn.LayerNorm(token_len)


pred_token = x[:, 0]
print('Length of prediction token:', pred_token.shape[-1])
Length of prediction token: 768

最后,将预测Token传递到头部以进行预测。头部通常是某种类型的神经网络,根据模型的不同而变化。在An Image is Worth 16x16 Words²中,他们在预训练期间使用具有一个隐藏层的MLP(多层感知器),在微调期间使用单个线性层。在Tokens-to-Token ViT³中,他们使用单个线性层作为头部。此示例将使用输出形状为1,以表示单个估计回归值。

head = nn.Linear(token_len, 1)
pred = head(pred_token)
print('Length of prediction:', (pred.shape[0], pred.shape[1]))
print('Prediction:', float(pred))
Length of prediction: (1, 1)
Prediction: -0.5474240779876709

这就是全部内容!模型已经进行了预测!

完整代码

为了创建完整的ViT模块,我们使用上面定义的Patch Tokenization模块和ViT Backbone模块。ViT Backbone如下所定义,包含了Token处理、编码块和预测处理组件。

class ViT_Backbone(nn.Module):
    def __init__(self,
                preds: int=1,
                token_len: int=768,
                num_heads: int=1,
                Encoding_hidden_chan_mul: float=4.,
                depth: int=12,
                qkv_bias=False,
                qk_scale=None,
                act_layer=nn.GELU,
                norm_layer=nn.LayerNorm):


        """ VisTransformer Backbone
            Args:
                preds (int): number of predictions to output
                token_len (int): length of a token
                num_heads(int): number of attention heads in MSA
                Encoding_hidden_chan_mul (float): multiplier to determine the number of hidden channels (features) in the NeuralNet component of the Encoding Module
                depth (int): number of encoding blocks in the model
                qkv_bias (bool): determines if the qkv layer learns an addative bias
                qk_scale (NoneFloat): value to scale the queries and keys by; 
                 if None, queries and keys are scaled by ``head_dim ** -0.5``
                act_layer(nn.modules.activation): torch neural network layer class to use as activation
                norm_layer(nn.modules.normalization): torch neural network layer class to use as normalization
        """


        super().__init__()


        ## Defining Parameters
        self.num_heads = num_heads
        self.Encoding_hidden_chan_mul = Encoding_hidden_chan_mul
        self.depth = depth


        ## Defining Token Processing Components
        self.cls_token = nn.Parameter(torch.zeros(1, 1, self.token_len))
        self.pos_embed = nn.Parameter(data=get_sinusoid_encoding(num_tokens=self.num_tokens+1, token_len=self.token_len), requires_grad=False)


        ## Defining Encoding blocks
        self.blocks = nn.ModuleList([Encoding(dim = self.token_len, 
                                               num_heads = self.num_heads,
                                               hidden_chan_mul = self.Encoding_hidden_chan_mul,
                                               qkv_bias = qkv_bias,
                                               qk_scale = qk_scale,
                                               act_layer = act_layer,
                                               norm_layer = norm_layer)
             for i in range(self.depth)])


        ## Defining Prediction Processing
        self.norm = norm_layer(self.token_len)
        self.head = nn.Linear(self.token_len, preds)


        ## Make the class token sampled from a truncated normal distrobution 
        timm.layers.trunc_normal_(self.cls_token, std=.02)


    def forward(self, x):
        ## Assumes x is already tokenized


        ## Get Batch Size
        B = x.shape[0]
        ## Concatenate Class Token
        x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1)
        ## Add Positional Embedding
        x = x + self.pos_embed
        ## Run Through Encoding Blocks
        for blk in self.blocks:
            x = blk(x)
        ## Take Norm
        x = self.norm(x)
        ## Make Prediction on Class Token
        x = self.head(x[:, 0])
        return x

通过ViT Backbone模块,我们可以定义完整的ViT模型。

class ViT_Model(nn.Module):
 def __init__(self,
    img_size: tuple[int, int, int]=(1, 400, 100),
    patch_size: int=50,
    token_len: int=768,
    preds: int=1,
    num_heads: int=1,
    Encoding_hidden_chan_mul: float=4.,
    depth: int=12,
    qkv_bias=False,
    qk_scale=None,
    act_layer=nn.GELU,
    norm_layer=nn.LayerNorm):


  """ VisTransformer Model


   Args:
    img_size (tuple[int, int, int]): size of input (channels, height, width)
    patch_size (int): the side length of a square patch
    token_len (int): desired length of an output token
    preds (int): number of predictions to output
    num_heads(int): number of attention heads in MSA
    Encoding_hidden_chan_mul (float): multiplier to determine the number of hidden channels (features) in the NeuralNet component of the Encoding Module
    depth (int): number of encoding blocks in the model
    qkv_bias (bool): determines if the qkv layer learns an addative bias
    qk_scale (NoneFloat): value to scale the queries and keys by; 
         if None, queries and keys are scaled by ``head_dim ** -0.5``
    act_layer(nn.modules.activation): torch neural network layer class to use as activation
    norm_layer(nn.modules.normalization): torch neural network layer class to use as normalization
  """
  super().__init__()


  ## Defining Parameters
  self.img_size = img_size
  C, H, W = self.img_size
  self.patch_size = patch_size
  self.token_len = token_len
  self.num_heads = num_heads
  self.Encoding_hidden_chan_mul = Encoding_hidden_chan_mul
  self.depth = depth


  ## Defining Patch Embedding Module
  self.patch_tokens = Patch_Tokenization(img_size,
           patch_size,
           token_len)


  ## Defining ViT Backbone
  self.backbone = ViT_Backbone(preds,
         self.token_len,
         self.num_heads,
         self.Encoding_hidden_chan_mul,
         self.depth,
         qkv_bias,
         qk_scale,
         act_layer,
         norm_layer)
  ## Initialize the Weights
  self.apply(self._init_weights)


 def _init_weights(self, m):
  """ Initialize the weights of the linear layers & the layernorms
  """
  ## For Linear Layers
  if isinstance(m, nn.Linear):
   ## Weights are initialized from a truncated normal distrobution
   timm.layers.trunc_normal_(m.weight, std=.02)
   if isinstance(m, nn.Linear) and m.bias is not None:
    ## If bias is present, bias is initialized at zero
    nn.init.constant_(m.bias, 0)
  ## For Layernorm Layers
  elif isinstance(m, nn.LayerNorm):
   ## Weights are initialized at one
   nn.init.constant_(m.weight, 1.0)
   ## Bias is initialized at zero
   nn.init.constant_(m.bias, 0)
   
 @torch.jit.ignore ##Tell pytorch to not compile as TorchScript
 def no_weight_decay(self):
  """ Used in Optimizer to ignore weight decay in the class token
  """
  return {'cls_token'}


 def forward(self, x):
  x = self.patch_tokens(x)
  x = self.backbone(x)
  return x

在ViT模型中,img_size、patch_size和token_len定义了Patch Tokenization模块。它们分别表示输入图像的大小、切分成的Patch的大小,以及由此生成的token序列的长度。正是通过这个模块,ViT将图像转化为模型能够处理的token序列。num_heads决定了多头注意力机制中“头”的数量;Encoding_hidden_channel_mul用于调整编码块的隐藏层通道数;qkv_bias和qk_scale则分别控制查询、键和值向量的偏置和缩放;而act_layer则代表激活函数层,我们可以选择任何torch.nn.modules.activation中的激活函数。此外,depth参数决定了模型中包含多少个这样的编码块。

norm_layer参数设置了编码块模块内外的norm。可以从任何torch.nn.modules.normalization⁸层中选择。

_init_weights方法来自于T2T-ViT³代码。此方法可以删除以随机初始化所有学习的权重和偏差。如实施的,线性层的权重被初始化为截断的正态分布;线性层的偏差被初始化为零;归一化层的权重被初始化为一;归一化层的偏差被初始化为零。

结论

现在,我们可以全面了解ViT模型的工作原理并进行训练!

本系列文章的GitHub存储库An Image is Worth 16x16 Words²的GitHub存储库

→ 包含预训练模型和微调代码;不包含模型定义在PyTorch图像模型(timm)⁹中实现的ViTtimm.create_model('vit_base_patch16_224', pretrained=True)

Phil Wang的vit-pytorch包

 
 
 
 

15921acc881c8b938aa37a5ffc627d96.jpeg

 
 
 
 
往期精彩回顾




适合初学者入门人工智能的路线及资料下载(图文+视频)机器学习入门系列下载机器学习及深度学习笔记等资料打印《统计学习方法》的代码复现专辑
  • 交流群

欢迎加入机器学习爱好者微信群一起和同行交流,目前有机器学习交流群、博士群、博士申报交流、CV、NLP等微信群,请扫描下面的微信号加群,备注:”昵称-学校/公司-研究方向“,例如:”张小明-浙大-CV“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~(也可以加入机器学习交流qq群772479961)

5ca9a2efc7a25bbfa7fcf2c2882056dc.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值