目录
1、概念
Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams.
即:Apache Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行状态计算。
Flink是有状态的流式处理,如图:
2、传统数据处理架构
(1)事务处理
优点:快速响应;
缺点:数据量大时,数据库压力大
(2)分析处理:将数据从业务数据库复制到数仓,再进行分析和查询
优点:适用大量数据;
缺点:只适合离线处理。
3、流处理的演变
(1)lambda 架构:用两套系统,同时保证低延迟和结果准确
(2)Flink具有低延迟、高吞吐性能,以及结果的准确性和良好的容错性
4、Flink 的主要特点
(1)事件驱动(Event-driven)
事件驱动型应用是一类具有状态的应用,它从一个或多个事件流提取数据,并根据到来的事件触发计算、状态更新或其他外部动作。比较典型的就是以kafka为代表的消息队列几乎都是事件驱动型应用。
与之不同的就是SparkStreaming微批次,
事件驱动型:
(2)流的世界观
批处理的特点是有界、持久、大量,非常适合需要访问全套记录才能完成的计算工作,一般用于离线统计。
流处理的特点是无界、实时, 无需针对整个数据集执行操作,而是对通过系统传输的每个数据项执行操作,一般用于实时统计。
在flink的世界观中,一切都是由流组成的,离线数据是有界限的流,实时数据是一个没有界限的流,这就是所谓的有界流和无界流。
无界数据流:无界数据流有一个开始但是没有结束,它们不会在生成时终止并提供数据,必须连续处理无界流,也就是说必须在获取后立即处理event。处理无界数据通常要求以特定顺序(例如事件发生的顺序)获取event,以便能够推断结果完整性。
有界数据流:有界数据流有明确定义的开始和结束,可以在执行任何计算之前通过获取所有数据来处理有界流,处理有界流不需要有序获取,因为可以始终对有界数据集进行排序,有界流的处理也称为批处理。
在spark的世界观中,一切都是由批次组成的,离线数据是一个大批次,而实时数据是由一个一个无限的小批次组成的。
(3)分层api
越顶层越抽象,表达含义越简明,使用越方便;越底层越具体,表达能力越丰富,使用越灵活。
最底层级的抽象仅仅提供了有状态流,它将通过过程函数(Process Function)被嵌入到DataStream API中。底层过程函数(Process Function) 与 DataStream API 相集成,使其可以对某些特定的操作进行底层的抽象,它允许用户可以自由地处理来自一个或多个数据流的事件,并使用一致的容错的状态。除此之外,用户可以注册事件时间并处理时间回调,从而使程序可以处理复杂的计算。
5、Flink 的其它特点
(1)支持事件时间(event-time)和处理时间(processing-time)语义;
(2)精确一次(exactly-once)的状态一致性保证;
(3)低延迟,每秒处理数百万个事件,毫秒级延迟;
(4)高可用,动态扩展,实现7*24小时全天候运行;
(5)与众多常用存储系统的连接。
6、Flink vs Spark Streaming
(1)世界观不同
Flink是基于流的,无界的,实时的;而sparkStreaming是基于批的,准实时。
sparkStreaming微批(micro-batching):
Flink流(stream):
(2)数据模型
spark 采用 RDD 模型,spark streaming 的 DStream 实际上也就是一组组小批数据RDD的集合;
flink基本数据模型是数据流,以及事件(Event)序列。
(3)运行时架构
spark 是批计算,将 DAG 划分为不同的 stage,一个完成后才可以计算下一个;
flink 是标准的流执行模式,一个事件在一个节点处理完后可以直接发往下一个节点进行处理。