机器学习接口代码之 Ridge、Lasso、Elasitc Net

目录

Ridge Regression (岭回归)

Lasso Regression

Elasitc Net(弹性网络)

案例:葡萄酒质量预测


官网地址https://scikit-learn.org/stable/modules/linear_model.html

Ridge Regression (岭回归)

API

class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver=’auto’, random_state=None)
岭回归是一种正则化方法,通过在损失函数中加入L2范数惩罚系项,来控制线性模型的复杂程度,从而使模型更加稳健。

参数
    alpha:{float,array-like},shape(n_targets)正则化参数
        α项,其值越大正则化项越大。其必须是正浮点数。 正则化改善了问题的条件并减少了估计的方差。Alpha对应于其他线性模型(如Logistic回归或LinearSVC)中的C^-1。 如果传递数组,则假定惩罚被特定于目标。 因此,它们必须在数量上对应。

    fit_intercept:boolean
        是否计算此模型的截距,即b值。如果为False,则不计算b值(模型会假设你的数据已经中心化)

    copy_X:boolean,可选,默认为True
        如果为True,将复制X; 否则,它可能被覆盖。

    max_iter:int,可选
        共轭梯度求解器的最大迭代次数。如果为None,则为默认值(不同silver的默认值不同) 对于'sparse_cg'和'lsqr'求解器,默认值由scipy.sparse.linalg确定。 对于'sag'求解器,默认值为1000。

    normalize:boolean,可选,默认为False
        如果为真,则回归X将在回归之前被归一化。 当fit_intercept设置为False时,将忽略此参数。 当回归量归一化时,注意到这使得超参数学习更加鲁棒,并且几乎不依赖于样本的数量。 相同的属性对标准化数据无效。 然而,如果你想标准化,请在调用normalize = False训练估计器之前,使用preprocessing.StandardScaler处理数据。

    solver:{'auto','svd','cholesky','lsqr','sparse_cg','sag'}
        指定求解最优化问题的算法:
        'auto':根据数据类型自动选择求解器。
        'svd':使用X的奇异值分解来计算Ridge系数。对于奇异矩阵比'cholesky'更稳定。
        'cholesky':使用标准的scipy.linalg.solve函数来获得闭合形式的解。
        'sparse_cg':使用在scipy.sparse.linalg.cg中找到的共轭梯度求解器。作为迭代算法,这个求解器比大规模数据(设置tol和max_iter的可能性)的“cholesky”更合适。
        'lsqr':使用专用的正则化最小二乘常数scipy.sparse.linalg.lsqr。它是最快的,但可能不是在旧的scipy版本可用。它还使用迭代过程。
        'sag':使用随机平均梯度下降。它也使用迭代过程,并且当n_samples和n_feature都很大时,通常比其他求解器更快。注意,“sag”快速收敛仅在具有近似相同尺度的特征上被保证。您可以使用sklearn.preprocessing的缩放器预处理数据。
       所有最后四个求解器支持密集和稀疏数据。但是,当fit_intercept为True时,只有'sag'支持稀疏输入。
       新版本0.17支持:随机平均梯度下降解算器。
    tol:float。解的精度,制定判断迭代收敛与否的阈值。
    random_state:int seed,RandomState实例或None(默认)
        仅用于'sag'求解器。
        如果为整数,则它指定了随机数生成器的种子。
        如果为RandomState实例,则指定了随机数生成器。
        如果为None,则使用默认的随机数生成器。 
        新版本0.17:random_state支持随机平均渐变。

属性
    coef_:array,shape(n_features,)或(n_targets,n_features)权重向量。
    intercept_:float | array,shape =(n_targets,)
       决策函数的独立项,即截距b值。 如果fit_intercept = False,则设置为0.0。
    n_iter_:array或None,shape(n_targets,)
       每个目标的实际迭代次数。 仅适用于sag和lsqr求解器。 其他求解器将返回None。在版本0.17中出现。

方法

fit(X,y [,sample_weight]):训练模型。

get_params([deep]):获取此估计器的参数。

predict(X):使用线性模型进行预测,返回预测值。

score(X,y [,sample_weight]):返回预测性能的得分,不大于1,越大效果越好。

set_params(** params)设置此估计器的参数。

Lasso Regression

API

class sklearn.linear_model.Lasso(alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic'

属性:
    alpha:float, optional。
        正则项参数。常数。默认值1.0。alpha=0时转化为最小二乘估计,由线性回归模型求解。使用Lasso模型时,通常令alpha≠0。

    fit_intercept:boolean, optional, default True。
        是否计算截距。如果为False,对数据进行去中心化处理。

    normalize:boolean, optional, default False。
        当fit_intercept=False时,该参数忽略。如果为normalize=True,使用回归模型之前先对回归数据X进行去均值和除以l2范数的处理。如果要对数据X进行标准化,令normalize=False,并在调用fit方法之前,使用sklearn.preprocessing.StandardScaler进行标准化。

    precompute:True | False | array-like, default=False
      是否使用事先计算好的Gram矩阵来加速模型计算。如果precompute='auto',让程序自动决定。Gram矩阵可以作为参数被传递。对于稀疏数据,通常令precompute=True,保留稀疏性。

    copy_X:boolean, optional, default True
      如果copy_X=True,复制X;如果copy_X=False,覆盖上次运行的X。

    max_iter:int, optional
      最大迭代次数。

    tol:float, optional
      优化容忍度:如果更新大于tol,继续优化,直到小于tol。

    warm_start:bool, optional
      如果warm_start=True,使用上次的解作为初始化;如果warm_start=False,清除之前的解。

    positive:bool, optional
      如果positive=True,强制将系数设为正数。

    random_state:int, RandomState instance or None, optional, default None
      伪随机数发生器种子,随机选择特征来更新模型。如果为int,random_state即为随机数发生器使用的种子;如果为RandomState实例,random_state即为随机数发生器;如果为None,随机数发生器为np.random使用的随机数发生器实例。该参数仅当selection=‘random’时使用。

    selection:str, default ‘cyclic’
      如果为‘random’,每次迭代都会更新随机系数,而不是按顺序遍历每个特征。该参数值可以使得算法更快收敛,尤其当tol>1e-4时。坐标轴下降法的下降形式

属性(Attributes)
    coef_:array, shape (n_features,) | (n_targets, n_features)
      系数向量。目标函数中的w。

    sparse_coef_:scipy.sparse matrix, shape (n_features, 1) | (n_targets, n_features)
      求解的coef_的稀疏表示。

    intercept_:float | array, shape (n_targets,)
      决策函数的依赖项。

    n_iter_:int | array-like, shape (n_targets,)
       坐标下降法求解达到容忍度时的迭代次数。

方法

fit(X,y,sample_weight=None):
    X:numpy array或稀疏矩阵,shape(n_samples,n_features)。训练数据
    y:numpy array,shape(n_samples,n_targets),对应的目标值
    sample_weight:numpy array,shape(n_samples),每个样本单独的权值。
    返回一个训练好的线性模型。

get_params(deep=True):
    获取模型的参数,返回一个string到任意可能值的映射

predict(X):对给定的数据X进行预测
    X:arrat-like对象或稀疏矩阵。shape(n_samples,n_features)。待测样本
    返回:array,shape(n_samples,),对输入的预测结果

score(X,y,sample_weight=None):
    计算对于X,y的R^2值。R^2=1-u/v. u= ((y_true - y_pred) ** 2).sum() ,v=((y_true - y_true.mean()) ** 2).sum()
    X:测试样例,array-like对象,shape(n_samples,n_features)
    y:X的真实目标值,array-like对象,shape(n_samples,)或者(n_samples, n_outputs)

sample_weight:array-like对象,shape(n_samples,),样本的独立权值。
    返回对应的R^2值,float

set_params(**params):设置参数。

Elasitc Net(弹性网络)

class sklearn.linear_model.ElasticNet(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=0.0001, warm_start=False, positive=False, random_state=None, selection=’cyclic’)

参数:
    alpha : alpha:正则化项中alpha值。

    l1_ratio:ρ值,ElasticNet混合参数,其中0 <= l1_ratio <= 1。对于l1_ratio = 0,惩罚为L2范数。 对于l1_ratio = 1,为L1范数。 对于0 <l1_ratio<1,惩罚是L1和L2的组合。

    fit_intercept:一个布尔值,制定是否需要b值。
    
    max_iter:一个整数,指定最大迭代数。
    
    normalize:一个布尔值。如果为True,那么训练样本会在回归之前会被归一化。
  
    copy_X:一个布尔值。如果为True,会复制X,否则会覆盖X。

    precompute:一个布尔值或者一个序列。它决定是否提前计算Gram矩阵来加速计算。Gram也可以传递参数, 对于稀疏输入,此选项始终为“True”以保留稀疏性。

    tol:一个浮点数,指定判断迭代收敛与否的一个阈值。
    
    warm_start:一个布尔值。如果为True,那么使用前一次训练结果继续训练,否则从头开始训练。

    positive:一个布尔值。如果为True,那么强制要求权重向量的分量都为整数。

    selection:一个字符串,可以选择‘cyclic’或者‘random’。它指定了当每轮迭代的时候,选择权重向量的哪个分量来更新。
        ‘ramdom’:更新的时候,随机选择权重向量的一个分量来更新。
        ‘cyclic’:更新的时候,从前向后一次选择权重向量的一个分量来更新。

    random_state:一个整数或者一个RandomState实例,或者None。 
        如果为整数,则它指定了随机数生成器的种子。
        如果为RandomState实例,则指定了随机数生成器。
        如果为None,则使用默认的随机数生成器。 

属性:
    coef_:权重向量。
    intercept:b值。
    n_iter_:实际迭代次数。

方法

fix(X,y[,sample_weight]):训练模型。
predict(X):用模型进行预测,返回预测值。
score(X,y[,sample_weight]):返回预测性能的得分,不大于1,越大效果越好。
get_params([deep]):获取此估计器的参数。
set_params(** params):设置此估计器的参数。

案例:葡萄酒质量预测

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
import warnings
import sklearn
from sklearn.linear_model import LinearRegression, LassoCV, RidgeCV, ElasticNetCV
from sklearn.preprocessing import PolynomialFeatures  # 数据预处理,标准化
from sklearn.pipeline import Pipeline
from sklearn.linear_model.coordinate_descent import ConvergenceWarning

# 设置字符集,防止中文乱码
mpl.rcParams['font.sans-serif'] = [u'simHei']
mpl.rcParams['axes.unicode_minus'] = False
# 拦截异常,不显示异常
warnings.filterwarnings(action='ignore', category=ConvergenceWarning)

# 创建模拟数据
np.random.seed(100)
np.set_printoptions(linewidth=1000, suppress=True)  # 显示方式设置,每行的字符数用于插入换行符,是否使用科学计数法
N = 10
x = np.linspace(0, 6, N) + np.random.randn(N)
y = 1.8 * x ** 3 + x ** 2 - 14 * x - 7 + np.random.randn(N)
# 将其设置为矩阵
x.shape = -1, 1
y.shape = -1, 1

# RidgeCV和Ridge的区别是:前者可以进行交叉验证
models = [
    Pipeline([
        ('Poly', PolynomialFeatures(include_bias=False)),
        ('Linear', LinearRegression(fit_intercept=False))
    ]),
    Pipeline([
        ('Poly', PolynomialFeatures(include_bias=False)),
        # alpha给定的是Ridge算法中,L2正则项的权重值,也就是ppt中的兰姆达
        # alphas是给定CV交叉验证过程中,Ridge算法的alpha参数值的取值的范围
        ('Linear', RidgeCV(alphas=np.logspace(-3, 2, 50), fit_intercept=False))
    ]),
    Pipeline([
        ('Poly', PolynomialFeatures(include_bias=False)),
        ('Linear', LassoCV(alphas=np.logspace(0, 1, 10), fit_intercept=False))
    ]),
    Pipeline([
        ('Poly', PolynomialFeatures(include_bias=False)),
        # la_ratio:给定EN算法中L1正则项在整个惩罚项中的比例,这里给定的是一个列表;
        # 表示的是在CV交叉验证的过程中,EN算法L1正则项的权重比例的可选值的范围
        ('Linear', ElasticNetCV(alphas=np.logspace(0, 1, 10), l1_ratio=[.1, .5, .7, .9, .95, 1], fit_intercept=False))
    ])
]

# 线性模型过拟合图形识别
plt.figure(facecolor='w')
degree = np.arange(1, N, 4)  # 阶
dm = degree.size
colors = []  # 颜色
for c in np.linspace(16711680, 255, dm):
    colors.append('#%06x' % int(c))

model = models[0]
for i, d in enumerate(degree):
    plt.subplot(int(np.ceil(dm / 2.0)), 2, i + 1)
    plt.plot(x, y, 'ro', ms=10, zorder=N)

    # 设置阶数
    model.set_params(Poly__degree=d)
    # 模型训练
    model.fit(x, y.ravel())

    lin = model.get_params('Linear')['Linear']
    output = u'%d阶,系数为:' % (d)
    # 判断lin对象中是否有对应的属性
    if hasattr(lin, 'alpha_'):
        idx = output.find(u'系数')
        output = output[:idx] + (u'alpha=%.6f, ' % lin.alpha_) + output[idx:]
    if hasattr(lin, 'l1_ratio_'):
        idx = output.find(u'系数')
        output = output[:idx] + (u'l1_ratio=%.6f, ' % lin.l1_ratio_) + output[idx:]
    print(output, lin.coef_.ravel())

    x_hat = np.linspace(x.min(), x.max(), num=100)  ## 产生模拟数据
    x_hat.shape = -1, 1
    y_hat = model.predict(x_hat)
    s = model.score(x, y)

    z = N - 1 if (d == 2) else 0
    label = u'%d阶, 正确率=%.3f' % (d, s)
    plt.plot(x_hat, y_hat, color=colors[i], lw=2, alpha=0.75, label=label, zorder=z)

    plt.legend(loc='upper left')
    plt.grid(True)
    plt.xlabel('X', fontsize=16)
    plt.ylabel('Y', fontsize=16)

plt.tight_layout(1, rect=(0, 0, 1, 0.95))
plt.suptitle(u'线性回归过拟合显示', fontsize=22)
plt.show()

## 线性回归、Lasso回归、Ridge回归、ElasticNet比较
plt.figure(facecolor='w')
degree = np.arange(1, N, 2)  # 阶, 多项式扩展允许给定的阶数
dm = degree.size
colors = []  # 颜色
for c in np.linspace(16711680, 255, dm):
    colors.append('#%06x' % int(c))
titles = [u'线性回归', u'Ridge回归', u'Lasso回归', u'ElasticNet']

for t in range(4):
    model = models[t]  # 选择了模型--具体的pipeline(线性、Lasso、Ridge、EN)
    plt.subplot(2, 2, t + 1)  # 选择具体的子图
    plt.plot(x, y, 'ro', ms=10, zorder=N)  # 在子图中画原始数据点; zorder:图像显示在第几层

    # 遍历不同的多项式的阶,看不同阶的情况下,模型的效果
    for i, d in enumerate(degree):
        # 设置阶数(多项式)
        model.set_params(Poly__degree=d)
        # 模型训练
        model.fit(x, y.ravel())

        # 获取得到具体的算法模型
        # model.get_params()方法返回的其实是一个dict对象,后面的Linear其实是dict对应的key
        # 也是我们在定义Pipeline的时候给定的一个名称值
        lin = model.get_params()['Linear']
        # 打印数据
        output = u'%s:%d阶,系数为:' % (titles[t], d)
        # 判断lin对象中是否有对应的属性
        if hasattr(lin, 'alpha_'):  # 判断lin这个模型中是否有alpha_这个属性
            idx = output.find(u'系数')
            output = output[:idx] + (u'alpha=%.6f, ' % lin.alpha_) + output[idx:]
        if hasattr(lin, 'l1_ratio_'):  # 判断lin这个模型中是否有l1_ratio_这个属性
            idx = output.find(u'系数')
            output = output[:idx] + (u'l1_ratio=%.6f, ' % lin.l1_ratio_) + output[idx:]
        # line.coef_:获取线性模型的参数列表,也就是我们ppt中的theta值,ravel()将结果转换为1维数据
        print(output, lin.coef_.ravel())

        # 产生模拟数据
        x_hat = np.linspace(x.min(), x.max(), num=100)  ## 产生模拟数据
        x_hat.shape = -1, 1
        # 数据预测
        y_hat = model.predict(x_hat)
        # 计算准确率
        s = model.score(x, y)

        # 当d等于5的时候,设置为N-1层,其它设置0层;将d=5的这条线凸显出来
        z = N + 1 if (d == 5) else 0
        label = u'%d阶, 正确率=%.3f' % (d, s)
        plt.plot(x_hat, y_hat, color=colors[i], lw=2, alpha=0.75, label=label, zorder=z)

    plt.legend(loc='upper left')
    plt.grid(True)
    plt.title(titles[t])
    plt.xlabel('X', fontsize=16)
    plt.ylabel('Y', fontsize=16)
plt.tight_layout(1, rect=(0, 0, 1, 0.95))
plt.suptitle(u'各种不同线性回归过拟合显示', fontsize=22)
plt.show()

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值