RidgeCV及LassoCV

本文介绍了RidgeCV和LassoCV两种正则化方法。在机器学习中,正则化路径是通过不同α值形成的参数序列。RidgeCV和LassoCV分别对应于正则化路径上的点,通过对最小和最大α值的比值来衡量路径长度,用于模型选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.RidgeCV

在这里插入图片描述

alphas = np.arange(1,1001,100) 
Ridge_ = RidgeCV(alphas=alphas
#,scoring="neg_mean_squared_error" 
,store_cv_values=True 
#,cv=5 
).fit(x, y)


print(x.shape) #有20640个sample
print(Ridge_.cv_values_.shape) 
#因为cv默认为留一验证,所以为20640,每一行代表一个验证集验证的结果;因为有10个alpha,所以有10列
# cv_values_这一属性只有cv为默认(None)且store_cv_values为True时才能调用,返回结果的size是(n_samples,n_alphas)
(20640, 8)
(20640, 10)
Ridge_ = RidgeCV(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值