1.RidgeCV
alphas = np.arange(1,1001,100)
Ridge_ = RidgeCV(alphas=alphas
#,scoring="neg_mean_squared_error"
,store_cv_values=True
#,cv=5
).fit(x, y)
print(x.shape) #有20640个sample
print(Ridge_.cv_values_.shape)
#因为cv默认为留一验证,所以为20640,每一行代表一个验证集验证的结果;因为有10个alpha,所以有10列
# cv_values_这一属性只有cv为默认(None)且store_cv_values为True时才能调用,返回结果的size是(n_samples,n_alphas)
(20640, 8)
(20640, 10)
Ridge_ = RidgeCV(