图像增强算法的目的是改善图像的视觉质量,使其更易于分析或增强特定特征。以下是一些常见的图像增强技术及其基本原理:
-
直方图均衡化:
- 直方图均衡化通过重新映射像素值来扩展图像的动态范围,使得图像的灰度级分布更加均匀。这通常会增加图像的对比度。
-
伽马校正(Gamma Correction):
- 通过改变像素值与最终输出之间的非线性关系来调整图像的亮度和对比度。伽马值小于1时,图像变亮;大于1时,图像变暗。
-
对数变换(Log Transform):
- 对数变换常用于增强图像的低灰度级部分,尤其是当图像的大部分信息集中在较暗区域时。
-
拉普拉斯增强:
- 拉普拉斯算子是一个边缘检测器,可以增强图像中的边缘。它通过计算图像二阶导数的绝对值来找出像素值变化最剧烈的地方。
-
Retinex理论:
- Retinex算法模拟人眼视觉系统,通过分离图像的照明和反射成分来增强细节和色彩。它通常涉及多尺度分析,如高斯金字塔,以及颜色恢复技术。
-
自适应直方图均衡化(Adaptive Histogram Equalization):
- 与全局直方图均衡化不同,自适应直方图均衡化在局部区域内进行,考虑了图像的局部特性,因此能更好地处理具有显著局部光照变化的图像。
-
噪声滤波(Noise Filterin