新手教程!一文详细讲解时间序列预测实战案例

本篇文章专为时间序列预测新手量身打造,旨在通过实战案例,引导读者从零开始,逐步掌握时间序列分析的核心原理与实战技巧。本文将带你深入理解时间序列预测的全过程,并结合 Python 编程语言及 Pandas、NumPy、Statsmodels等常用库,实战演示时间序列数据的预处理、建模与评估。跟随本教程,你将轻松掌握时间序列预测的全过程。

1、功能库准备

在这个实战案例中,我们使用了以下几款 Python 常用功能库

  • Pandas:处理时间序列数据非常方便,支持日期索引和丰富的数据操作功能。
  • Matplotlib:强大的数据可视化工具,能够生成各种图表来展示数据。
  • Statsmodels:专注于统计建模和计量经济学,其中时间序列分析是其重要组成部分。
  • Scikit-learn:机器学习库,提供了丰富的算法和工具,用于构建和评估模型。
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
from sklearn.metrics import mean_squared_error
2、数据准备

本文使用国际航空公司人员数量数据集为例,数据集的时间跨度为:1949年1月-1960年12月,有两个字段:月份(Month&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

coder_风逝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值