本篇文章专为时间序列预测新手量身打造,旨在通过实战案例,引导读者从零开始,逐步掌握时间序列分析的核心原理与实战技巧。本文将带你深入理解时间序列预测的全过程,并结合 Python 编程语言及 Pandas、NumPy、Statsmodels等常用库,实战演示时间序列数据的预处理、建模与评估。跟随本教程,你将轻松掌握时间序列预测的全过程。
1、功能库准备
在这个实战案例中,我们使用了以下几款 Python 常用功能库
- Pandas:处理时间序列数据非常方便,支持日期索引和丰富的数据操作功能。
- Matplotlib:强大的数据可视化工具,能够生成各种图表来展示数据。
- Statsmodels:专注于统计建模和计量经济学,其中时间序列分析是其重要组成部分。
- Scikit-learn:机器学习库,提供了丰富的算法和工具,用于构建和评估模型。
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
from sklearn.metrics import mean_squared_error
2、数据准备
本文使用国际航空公司人员数量数据集为例,数据集的时间跨度为:1949年1月-1960年12月,有两个字段:月份(Month&