蒙特卡洛方法及数学建模算法与应用第二章习题

本文介绍了蒙特卡洛方法作为随机取样技术在解决整数规划问题中的应用。通过C语言代码展示如何利用这种方法解决确保每个小区至少有一所学校的分配问题,同时探讨了其与遗传算法的对比。
摘要由CSDN通过智能技术生成

蒙特卡洛的方法又称为随机取样法,所以他是根据大量随机数来跑出满意解

比如上一章用遗传算法的完全可以用蒙特卡洛方法(一口血吐出....)

 以下为c语言代码:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
int check(int x[])
{
    if (x[0]+x[1]+x[2]+x[3]+x[4]>400)
    return 0;
    if (x[0]+2*x[1]+2*x[2]+x[3]+6*x[4]>800)
    return 0;
    if (2*x[0]+x[1]+6*x[2]>200)
    return 0;
    if (x[2]+x[3]+5*x[4]>200)
    return 0;
    return 1;

}
 int main()
 {
     int x[5];
     int ans[5];
     int i,j,max;
     srand(time(NULL));
     max=-2;
     memset(ans,0,sizeof(ans));
     for (i=0;i<100000;i++)
     {
         for (j=0;j<5;j++)
          x[j]=rand()%100;
          if (check(x))
          if ((x[0]*x[0]+x[1]*x[1]+x[2]*x[2]*3+4*x[3]*x[3]+2*x[4]*x[4]-8*x[0]-2*x[1]-3*x[2]-x[3]-2*x[4])>max)
            {
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值