2012年国赛高教杯数学建模A题葡萄酒的评价解题全过程文档及程序

2012年国赛高教杯数学建模

A题 葡萄酒的评价

  确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。请尝试建立数学模型讨论下列问题:
  1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?
  2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
  3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。
  4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?

  附件1:葡萄酒品尝评分表(含4个表格)
  附件2:葡萄和葡萄酒的理化指标(含2个表格)
  附件3:葡萄和葡萄酒的芳香物质(含4个表格)

整体求解过程概述(摘要)

  本文运用多种相关分析、综合评价和线性回归等方法解决了葡萄酒质量的评价问题。 对于问题一,首先通过单样本K-S检验等方法确定了各葡萄酒样本评分数据的概率分布,从而确定了显著性差异模型的建立,接着考虑两组评分数据的配对关系约束,引入Wilcoxon 符号秩检验法来进行显著性差异的假设检验。结果显示对于红、白葡萄酒,两个品酒组的评价结果均存在显著性差异。最后利用秩相关分析,引入肯德尔和谐系数法评定评酒组的评分信度,评价结果显示对于红葡萄酒,第一组品酒员的品尝得分更为可信,而对于白葡萄酒则是第二组品酒员在可信度方面占优。
  问题二,运用主成分分析法进行指标遴选,构建酿酒葡萄质量的综合评价指标体系,并利用该指标体系建立基于综合评价的酿酒葡萄分级模型,对酿酒葡萄进行分级。结果发现样本葡萄大多集中在二、三级,红葡萄样本中样本 23质量最优,为特级葡萄;样本12质量相对欠缺,属六级葡萄。
  问题三中,采用研究两组变量之间相关关系的多元统计方法——典型相关分析,识别并量化两组变量——酿酒葡萄与葡萄酒的理化指标——之间的关系。分析结果如下:第一,增大酿酒葡萄果皮的含量对葡萄酒中 DPPH半抑制体积含量的增加有重要影响;第二,酿酒葡萄中的苹果酸不仅能促发酵,还能给对红葡萄酒起主要呈色作用的花色苷和对花色苷起中等辅色作用的单宁物质起保护作用,使得红葡萄酒呈色亮丽;第三,在葡萄总黄酮消除自由基的抗氧化作用和总酚保护清除自由基的共同作用下,酿酒葡萄中的DPPH自由基转化为葡萄酒中的DPPH半抑制体积。
  对于问题四,首先在问题三分析酿酒葡萄与葡萄酒的理化指标间联系的基础上,在保留葡萄酒指标的前提下,剔除酿酒葡萄指标中某些认为可以被用于表示对应葡萄酒指标的部分。接着,利用筛选后的指标建立多元线性回归模型,探究酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。经检验样本组的线性回归模型评价值与评分值的显著性差异检验,用葡萄和葡萄酒的理化指标来评价葡萄酒的质量是可行的。
  本文综合秩相关分析评价、基于层次分析法的综合评价、典型相关分析、多元线性回归等模型,结合MATLAB、SPSS、SAS 和 EXCEL 等软件,对葡萄酒质量的评价问题进行了多角度的分析,并给出了利用理化指标评价葡萄酒质量的模型。在文章的最后对模型的适用范围做出了推广,在实际应用中有较大的参考价值。

模型假设:

  1. 假设各样本能真实客观地反映酿酒葡萄与葡萄酒的情况;
  2. 葡萄酒的质量只与酿酒葡萄的好坏有关,忽略酿造过程中的温度、湿度、人为干扰等其他因素的影响;
  3. 不考虑理化性质的二级指标;
  4. 每组评酒员的打分不受上个酒样品的影响,即各评分数据间独立;

问题分析:

  问题一的分析
  问题一要求比较两组评价结果的是否存在差异,并建立合理的评价模型以判断两组结果在可信程度方面的优劣。首先,我们从问题分析可以得出品酒员对葡萄酒样本的品尝评分是属于感官评价,具有较大的主观性。因此,我们先从问题所给的数据入手,分析四组品酒结果中对不同样本打分分布。依靠葡萄酒样本评分的概率分布,建立显著性差异模型。由于品酒员间存在评价尺度、评价位置和评价方向等方面的差异,不同组别的品酒员对同一酒样的评价结果存在着差异。此时不适用参数检验的方法,而只能用非参数统计方法来处理。
  对主观评分结果合理性的评价,仅仅局限于评分之间表面的数值关系是不够的。因此,考虑采取秩相关分析法建立评价模型,将评分结果的具体数值部分予以丢弃,只保留各评分秩大小关系的信息,以给出数据中最稳固、最一般的关系,度量整体评分结果在可信度方面的优劣。
  问题二的分析
  酿酒葡萄,是指以酿造葡萄酒为主要生产目的的葡萄品种[1]。问题二要求分析确定合理的评价指标体系,并运用该评价指标体系对酿酒葡萄进行分级。显而易见,该问题要求我们建立一个评价模型。 评价体系主要包含两方面指标: 第一个方面是葡萄酒的质量。这包括外观、香气、口感、整体四方面的评分。外观包括澄清度和色调,香气包括纯正度、浓度和质量,口感则通过纯正度、浓度、持久性和质量体现。 第二个方面酿酒葡萄自身的理化指标。如附加二中的葡萄总黄酮、总酚、单宁、果皮质量等27个指标。对于这27个酿酒葡萄自身的理化指标,根据多个样本得到的数据分析出其内在的关系,将相关性显著的指标合并,则可以使得计算简单。 那么由以上的分析可以构建综合评价指标体系,建立模型进行多指标综合评价.基于综合评价的结果,即可对酿酒葡萄进行分级。
  问题三的分析
  问题三中,题目要求分析酿酒葡萄与葡萄酒的理化指标之间的联系。酿酒葡萄和葡萄酒分别存在多个理化指标,若采用简单相关分析的方法,只是孤立考虑了单个X与单个Y间的相关,而没有考虑X、Y变量组内部各变量间的相关。酿酒葡萄经发酵酿成葡萄酒的化学过程,使得两组变量间有许多简单相关系数,使问题显得复杂,难以从整体描述。因此,考虑采用研究两组变量之间相关关系的多元统计方法——典型相关分析,识别并量化酿酒葡萄与葡萄酒的理化指标两组变量之间的关系,考虑两组变量的线性组合,并研究它们之间的相关系数p(u,v)。
  问题四的分析
  问题四中,需要我们通过酿酒葡萄和葡萄酒的理化指标,得到对葡萄酒的质量的评价,并论证是否可行。因此,首先考虑在问题三的基础上,针对酿酒葡萄与葡萄酒理化指标之间的联系和它们与葡萄酒质量之间的相关性进行指标的筛选。随后,期望建立一个线性回归模型,通过该模型来得到对葡萄酒质量的评价。 由于要论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量,初步认为在建立线性回归模型时对样本进行随机遴选,选中的样本作为示例样本组建立线性回归方程,未选中的样本作为检验样本组对模型的可行性进行验证。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

 
                                                  The CANCORR Procedure
  
                                             Canonical Correlation Analysis
 
                                                        Adjusted    Approximate        Squared
                                        Canonical      Canonical       Standard      Canonical
                                      Correlation    Correlation          Error    Correlation
 
                                  1      0.995211       0.991933       0.001300       0.990446
                                  2      0.969058       0.945198       0.008291       0.939074
                                  3      0.956550       0.930115       0.011569       0.914988
                                  4      0.931041       0.892306       0.018121       0.866837
                                  5      0.865289       0.762136       0.034194       0.748725
                                  6      0.845662        .             0.038764       0.715145
                                  7      0.758226       0.646146       0.057848       0.574906
                                  8      0.611388       0.404807       0.085216       0.373795
                                  9      0.490927       0.245674       0.103286       0.241010
 
                                                                       Test of H0: The canonical correlations in the
                           Eigenvalues of Inv(E)*H                       current row and all that follow are zero
                             = CanRsq/(1-CanRsq)
                                                                  Likelihood   Approximate
              Eigenvalue   Difference   Proportion   Cumulative        Ratio       F Value   Num DF   Den DF   Pr > F
 
          1     103.6664      88.2531       0.7194       0.7194   0.00000010          3.25      270   159.84   <.0001
          2      15.4133       4.6502       0.1070       0.8263   0.00000997          2.19      232   147.92   <.0001
          3      10.7631       4.2535       0.0747       0.9010   0.00016371          1.78      196   134.58   0.0002
          4       6.5096       3.5299       0.0452       0.9462   0.00192572          1.40      162   119.78   0.0252
          5       2.9797       0.4691       0.0207       0.9668   0.01446142          1.09      130   103.52   0.3337
          6       2.5106       1.1581       0.0174       0.9843   0.05755217          0.90      100   85.792   0.6860
          7       1.3524       0.7555       0.0094       0.9937   0.20204026          0.65       72   66.608   0.9605
          8       0.5969       0.2794       0.0041       0.9978   0.47528380          0.45       46       46   0.9960
          9       0.3175                    0.0022       1.0000   0.75899040          0.35       22       24   0.9925
 
 
 
                                      Multivariate Statistics and F Approximations
  
                                                   S=9    M=10    N=7
  
                     Statistic                        Value    F Value    Num DF    Den DF    Pr > F
 
                     Wilks' Lambda               0.00000010       3.25       270    159.84    <.0001
                     Pillai's Trace              6.36492538       1.93       270       216    <.0001
                     Hotelling-Lawley Trace    144.10948086       7.72       270    62.846    <.0001
                     Roy's Greatest Root       103.66636934      82.93        30        24    <.0001
 
                              NOTE: F Statistic for Roy's Greatest Root is an upper bound.
1                                                                             2009年07月01日 星期三 下午05时00分34秒   2
 
                                                  The CANCORR Procedure
  
                                             Canonical Correlation Analysis
 
                                    Raw Canonical Coefficients for the VAR Variables
  
                                                        V1             V2             V3             V4             V5
 
   _COL1    氨基酸总量mg/100gfw               2.8375621E-6   0.0000563499   0.0002130867   -0.000208389   0.0001522384
   _COL2    蛋白质mg/100g                     0.0009555603   -0.000514716   -0.001446732   0.0013079563   -0.012042568
   _COL3    VC含量(mg/L)                     0.0231640381   0.1009254687   0.0693214075   -0.027772247   -0.250579582
   _COL4    花色苷mg/100g鲜重                 0.0057075879   -0.003552114    0.011282816   -0.000470638   -0.000802931
   _COL5    酒石酸(g/L)                      0.003447964   0.0893729646   0.0147415535   0.1231684506   0.0094209531
   _COL6    苹果酸(g/L)                      0.034841638   -0.184531226   -0.103207119    -0.01186258   -0.052464748
   _COL7    柠檬酸(g/L)                      0.026021002    -0.04650814   -0.045045272   -0.074610922   -0.134186735
   _COL8    多酚氧化酶活力E(A/min·g·ml)   -0.003098431   -0.005421559   0.0069646102   0.0210185967   0.0164462499
   _COL9    褐变度ΔA/g*g*min*ml              -0.000035288   -0.000515777   0.0001822099   -0.000641781   0.0015541754
   _COL10   DPPH自由基1/IC50(g/L)           0.1680045671   -0.623117175   -0.902937743   -2.730587132   -0.010176605
   _COL11   总酚(mmol/kg)                     -0.008718836    0.059861779   0.1136482501     0.20898738   0.0621219707
   _COL12   单宁(mmol/kg)                     0.0154013992   -0.067340073   -0.055177023   -0.073956548   0.0172989176
   _COL13   葡萄总黄酮(mmol/kg)             -0.039628792   0.1251551601   0.1005154541    -0.25828439   0.0358632638
   _COL14   白藜芦醇(mg/kg)                   -0.020160726   0.0433284089   0.0441190486   0.0262898964   0.1181781911
   _COL15   黄酮醇(mg/kg)                     0.0052897574   0.0048025136   -0.004089473    0.024204594    -0.02359164
   _COL16   总糖g/L                           -0.003107495   -0.002103545   -0.009665785   -0.002546521   0.0299471534
   _COL17   还原糖g/L                         -0.005296203   0.0059293532   0.0095201495   0.0162300726    0.001971925
   _COL18   可溶性固形物g/l                   0.0130294586   0.0115345282   0.0059397209   0.0052844102   -0.051652208
   _COL19   PH值                              -0.157297953   -0.753897735   -0.975190464   -0.0057
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值