机器学习1——手把手教你用Python跑一个线性回归模型

目录

一、前期准备

1.Scikit-learn

2.matplotlib 

二、机器学习过程

三、代码框架

四、完整代码

1.导入所需库

2.准备训练数据

3.喂入训练数据

4.结果预测 

5.输出模型中的w与b值 

6.可视化 

7.传入不规则数据


 

一、前期准备

在机器学习中我们使用Python居多,这里就不写Python的安装步骤了。这里主要讲跑机器学习需要用到的库。

1.Scikit-learn

这是一个机器学习库之一,是基于 Python 语言实现的机器学习算法库,它包含了常用的机器学习算法,比如回归、分类、聚类、支持向量机、随机森林等等。同时,它使用 NumPy 库进行高效的科学计算,比如线性代数、矩阵等等。

在Windows搜索栏搜索“cmd”进入命令指示栏窗口,在其中输入如下代码:

pip install scikit-learn

敲击回车就可以看到cmd在自动下载内容。

2.matplotlib 

matplotlib是可视化绘图工具包,与上述一致,在cmd中输入

pip install matplotlib 

并敲击回车,等待下载完成。

二、机器学习过程

“回归模型”其实就是指通过一个给定的数据集来预测值的模型,比较类似于初中时的给几对(x,y)数据求函数表达式,并依据表达式预测出剩余x所对应的y。

例如:这里有(1,3)、(2,5)两个点,要求(3,?)的问号值。这个题给初中生甚至小学生都会做,但我们还是需要捋清楚我们的解题步骤:

第一步,设定函数。在做此题时我们会先设一个函数y=kx+b。这个过程在机器学习中被称为假设函数。

第二步,解出k、b的值。在设好函数后,我们会将已知的两个数据(1,3)、(2,5)代入方程中,通过消元法解出k、b的值。在机器学习中,(1,3)、(2,5)这两个点称为数据集,将处理好的数据集喂给模型,模型就能自动解出k、b。解决线性回归问题的关键就在于求出这些值。

第三步,将(3,?)代入解出的函数中,求出?的值。

没错,实际上机器学习的回归模型就是一个不停解出系数的过程。只不过在实际应用中,我们需要的自变量不只x一个,而是有很多个,所以真正的假设函数长这个样子:

 y=\omega _{1}x_{1}+\omega _{2}x_{2}+......+\omega _{i}x_{i}+b

这里,我们的自变量将不只一个,而是有很多个,自变量前面的字母也不是k,而是

<think>好的,我需要帮助用户了解如何运行或启动机器学习任务,包括运行模型和启动训练。首先,用户的问题涉及两个主要方面:运行已有的机器学习模型和启动新的训练流程。根据用户提供的引用内容,特别是引用[1]和[2],需要结合这些信息来构建回答。 首先,我需要整理运行机器学习模型的一般步骤。通常,这包括数据准备、加载模型、预处理数据、模型推理和后处理。例如,用户提到的封装成桌面应用可能涉及到将训练好的模型保存后,在应用中进行加载和使用。这里可以提到使用Python的库如joblib或pickle来保存和加载模型,同时需要注意在GUI应用中的性能优化,如引用[1]提到的。 接下来是启动机器学习训练的流程。这里需要涵盖数据收集与清洗、特征工程、模型选择、训练与验证、调优以及部署。引用[2]提到在数据科学学习过程中,通过信息图简化流程,这可能涉及到使用工具如Scikit-learn、TensorFlow等框架来构建和训练模型。同时,要强调数据预处理的重要性,比如处理缺失值、标准化等步骤。 用户提供的引用中,引用[1]还提到了GUI程序中的性能优化方法,这部分可能需要简要提及,例如使用Cython加速关键代码,或者异步处理防止界面卡顿。但用户当前的问题更关注如何启动和运行,所以这部分可以作为补充信息。 此外,用户可能对工具和框架感兴趣,需要列出常用的库,比如Pandas、NumPy用于数据处理,Scikit-learn用于传统机器学习模型,TensorFlow/PyTorch用于深度学习。在部署方面,可以提到Flask或Django构建API,或者使用PyInstaller封装桌面应用。 最后,生成相关问题需要考虑用户可能的后续疑问,例如数据预处理的具体方法、如何选择模型、训练中的过拟合处理、模型部署的步骤等。 需要确保回答结构清晰,分点说明,同时保持语言简洁,符合中文表达习惯。还要注意所有数学表达式使用正确的LaTeX格式,例如在提到损失函数时使用$L = \frac{1}{n}\sum_{i=1}^n(y_i - \hat{y}_i)^2$这样的格式。 总结步骤: 1. 运行机器学习模型的步骤:数据准备、加载模型、预处理、推理、后处理。 2. 启动训练的流程:数据准备、特征工程、模型选择、训练验证、调优、部署。 3. 工具和框架推荐。 4. 性能优化提示(来自引用[1])。 5. 相关问题生成。 需要检查是否符合系统级指令,特别是LaTeX格式是否正确,引用标识是否添加。同时确保回答真实可靠,引用相关文献。</think>### 如何运行或启动机器学习任务 #### 一、运行机器学习模型 1. **数据准备** 输入数据需与训练数据格式一致。例如,图像分类任务需将图像调整为固定尺寸并归一化到$[0,1]$范围。 2. **加载模型** 使用Python库(如`joblib`、`pickle`或框架自带接口)加载预训练模型: ```python import joblib model = joblib.load('model.pkl') # 加载Scikit-learn模型 ``` 3. **数据预处理** 对输入数据执行与训练阶段相同的预处理操作,例如标准化: $$x_{\text{std}} = \frac{x - \mu}{\sigma}$$ 其中$\mu$为训练集均值,$\sigma$为标准差[^2]。 4. **模型推理** 调用预测接口生成结果: ```python prediction = model.predict(new_data) # 分类或回归输出 ``` 5. **后处理与输出** 根据任务需求解析结果,例如将分类概率转换为标签,或反归一化回归值。 --- #### 二、启动机器学习训练 1. **数据收集与清洗** - 从数据库、文件(CSV、Excel)或API获取原始数据。 - 处理缺失值(删除、插值)、异常值(截断或分箱)和重复值[^2]。 2. **特征工程** - 特征选择:使用相关系数、卡方检验等方法筛选重要特征。 - 特征变换:对非数值数据编码(如独热编码),或生成多项式特征$X^2, X_1X_2$。 3. **模型选择与定义** - 传统模型:Scikit-learn中的`RandomForestClassifier`、`SVM`。 - 深度学习:使用TensorFlow/Keras或PyTorch定义网络结构: ```python model = tf.keras.Sequential([ tf.keras.layers.Dense(64, activation='relu', input_shape=(input_dim,)), tf.keras.layers.Dense(10, activation='softmax') ]) ``` 4. **训练与验证** - 划分训练集/验证集(比例通常为8:2)。 - 定义损失函数(如交叉熵$L = -\sum y_i \log(\hat{y}_i)$)和优化器(如Adam)。 - 启动训练循环: ```python model.fit(X_train, y_train, epochs=50, validation_data=(X_val, y_val)) ``` 5. **模型调优** - 超参数优化:使用网格搜索(`GridSearchCV`)或贝叶斯优化。 - 防止过拟合:添加Dropout层或L2正则化$L_{\text{reg}} = \lambda \sum w_i^2$。 6. **模型部署** - 封装为API:使用Flask或FastAPI构建服务。 - 桌面应用:通过PyQt/Tkinter集成模型,引用[1]提到的性能优化方法如异步推理可避免界面卡顿。 --- #### 三、常用工具与框架 | 任务类型 | 推荐工具 | |----------------|--------------------------------------------------------------------------| | 数据处理 | Pandas, NumPy, OpenCV(图像) | | 传统机器学习 | Scikit-learn, XGBoost | | 深度学习 | TensorFlow, PyTorch, Keras | | 可视化 | Matplotlib, Seaborn | | 部署 | Flask(API)、PyInstaller(打包EXE)、Docker(容器化)[^1] | --- #### 四、性能优化提示 - **推理加速**:使用ONNX格式转换模型,或启用TensorRT优化(针对NVIDIA GPU)。 - **内存管理**:批量处理数据(Batch Inference)减少I/O开销。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风痕天际

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值