机器学习1——手把手教你用Python跑一个线性回归模型

目录

一、前期准备

1.Scikit-learn

2.matplotlib 

二、机器学习过程

三、代码框架

四、完整代码

1.导入所需库

2.准备训练数据

3.喂入训练数据

4.结果预测 

5.输出模型中的w与b值 

6.可视化 

7.传入不规则数据


 

一、前期准备

在机器学习中我们使用Python居多,这里就不写Python的安装步骤了。这里主要讲跑机器学习需要用到的库。

1.Scikit-learn

这是一个机器学习库之一,是基于 Python 语言实现的机器学习算法库,它包含了常用的机器学习算法,比如回归、分类、聚类、支持向量机、随机森林等等。同时,它使用 NumPy 库进行高效的科学计算,比如线性代数、矩阵等等。

在Windows搜索栏搜索“cmd”进入命令指示栏窗口,在其中输入如下代码:

pip install scikit-learn

敲击回车就可以看到cmd在自动下载内容。

2.matplotlib 

matplotlib是可视化绘图工具包,与上述一致,在cmd中输入

pip install matplotlib 

并敲击回车,等待下载完成。

二、机器学习过程

“回归模型”其实就是指通过一个给定的数据集来预测值的模型,比较类似于初中时的给几对(x,y)数据求函数表达式,并依据表达式预测出剩余x所对应的y。

例如:这里有(1,3)、(2,5)两个点,要求(3,?)的问号值。这个题给初中生甚至小学生都会做,但我们还是需要捋清楚我们的解题步骤:

第一步,设定函数。在做此题时我们会先设一个函数y=kx+b。这个过程在机器学习中被称为假设函数。

第二步,解出k、b的值。在设好函数后,我们会将已知的两个数据(1,3)、(2,5)代入方程中,通过消元法解出k、b的值。在机器学习中,(1,3)、(2,5)这两个点称为数据集,将处理好的数据集喂给模型,模型就能自动解出k、b。解决线性回归问题的关键就在于求出这些值。

第三步,将(3,?)代入解出的函数中,求出?的值。

没错,实际上机器学习的回归模型就是一个不停解出系数的过程。只不过在实际应用中,我们需要的自变量不只x一个,而是有很多个,所以真正的假设函数长这个样子:

 y=\omega _{1}x_{1}+\omega _{2}x_{2}+......+\omega _{i}x_{i}+b

这里,我们的自变量将不只一个,而是有很多个,自变量前面的字母也不是k,而是\omega,它的含义是权值,权值系数越大,那么这一项属性值对最终结果的影响就越大。

而且,问号的值也不会是确定的,而是需要根据结果不断调整参数,达到预测的目的。

三、代码框架

使用Scikit-learn(以下简称sklearn)实现线性回归算法主要分为三步: 

1.从库中导入线性回归算法:

from sklearn import linear_model

2.使用fit()喂入数据,训练模型:

model = linear_model.LinearRegression()

model.fit(x, y)

3.对训练好的模型进行预测,调用predict()输出预测结果,“x_”为预测数据:

model.predict(x_)

没错,它就像看起来那样简单。

四、完整代码

import  matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model

x = np.linspace(3,6.4)

y = 3 * x + 2

x=[[i] for i in x]
y=[[i] for i in y]
model=linear_model.LinearRegression()
model.fit(x,y)
x_=[[4],[5],[6]]
y_=model.predict(x_)
print(y_)

print("w值为:",model.coef_)
print("b截距值为:",model.intercept_)

plt.scatter(x,y)
plt.plot(x_,y_,color="red",linewidth=3.0,linestyle="-")
plt.legend(["func","Data"],loc=0)
plt.show()

运行结果:

输出:

 详细讲解如下:

1.导入所需库

这个没什么好讲的,就是把库导入进来:

import  matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model

2.准备训练数据

x = np.linspace(3,6.4)

y = 3 * x + 2

这里,linspace()函数是numpy库里的生成等间隔数字序列的函数,函数原型如下:

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None) 

这个函数最少需要传入两个函数,“start”是序列的起始值,“stop”是序列结束值,如果后面的“endpoint”参数为True,则将结束值包含在序列中,否则不包含。“num”是生成的样本数,默认是50。“endpoint”就是是否包含序列结束值的意思。“retstep”为是否返回样本之间的步长,默认是False。“dtype”是输出数组的数据类型,如果没有就从其他输入参数判断。

之后,我们使用了一个一次函数来计算y列表的值。这样,我们的x和y都有了。

3.喂入训练数据

x=[[i] for i in x]
y=[[i] for i in y]
model=linear_model.LinearRegression()
model.fit(x,y)

 由于fit需要传入二维矩阵数据,因此需要处理x,y的数据格式,将每个样本信息单独作为矩阵的一行。前两行代码相当于把[1,2,3]的数据转化为:[[1],[2],[3]]。之后我们调用线性回归模型,使用fit()函数喂入训练数据。fit函数原型长这样:

model.fit(x_train, y_train, batch_size=32, epochs=10, validation_data=(x_val, y_val))

其中,“x_train”代表训练数据的输入特征,“y_train”代表输入数据的目标值,与前一个“x_train”对应。“batch_size”代表每次训练所使用的样本量。“epochs”代表训练的轮数,每一轮表示模型在整个训练数据集上进行一次完整的遍历。“validation_data”代表在训练过程中提供验证数据,模型在每个 epoch 结束后会在验证数据上进行评估,以监控模型的性能。

这里,我们只传入了训练数据,其他全部默认。

4.结果预测 

x_=[[4],[5],[6]]
y_=model.predict(x_)
print(y_)

这里,我们又定义了一个“x_”的待预测数据,让“y_”等于经过模型预测的目标值,并将其打印。

5.输出模型中的w与b值 

要判断机器做对题没有,需要将它计算出的w与b值打印才能判断:

print("w值为:",model.coef_)
print("b截距值为:",model.intercept_)

6.可视化 

plt.scatter(x,y)
plt.plot(x_,y_,color="red",linewidth=3.0,linestyle="-")
plt.legend(["func","Data"],loc=0)
plt.show()

这里,我们使用matplotlib包,将训练数据与预测出的函数都显示出来。

这样,我们就完成了一次机器学习,并且预测结果和我们想象中的接近。

但需要注意的是,很多时候传入的训练数据并不会像这样规矩,所以接下来我们需要让训练数据稍微变动一下。

7.传入不规则数据

只需要在准备训练数据时多加一行,让x的值有一个上下浮动的范围即可: 

x = np.linspace(3,6.4)

y = 3 * x + 2 

x = x + np.random.rand(50)

 

 

可以看到,我们的模型依然很好的完成了任务。 

那么,具体模型是怎么做到的,我们下回分解(其实我也不会)。

  • 29
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风痕天际

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值