YOLO系列资料整合

21 篇文章 3 订阅
20 篇文章 0 订阅

github

YOLO-Summary

YOLO源码:

  • https://github.com/pjreddie/darknet
  • https://github.com/AlexeyAB/darknet
    非常推荐AlexeyAB的darknet改进版
    论文:
  • https://pjreddie.com/media/files/papers/YOLOv3.pdf

YOLOv3复现代码合集涵盖 5 种常用深度学习框架:

TensorFlow

ProjectInferneceTrainstar
tensorflow-yolov31837
yolov3-tf2795
tensorflow-yolo-v3x666
YOLOv3-tensorflow272

PyTorch

ProjectInferneceTrainstar
PyTorch-YOLOv32955
yolov32686
pytorch-yolo-v3x2291
YOLO_v3_tutorial_from_scratchx1489
ObjectDetection-OneStageDet1471
YOLOv3_PyTorch442
PyTorch_YOLOv3258

Keras

ProjectInferneceTrainStar
keras-yolo34680
YOLOv3x505
keras-YOLOv3-mobilenet410

Caffe

ProjectInferneceTrainStar
MobileNet-YOLO569
caffe-yolov3x273
Caffe-YOLOv3-Windows163

MXNet

ProjectInferneceTrainStar
gluoncv3187

参考:

  • https://zhuanlan.zhihu.com/p/50170492
  • https://github.com/amusi/YOLO-Reproduce-Summary/blob/master/README.md

一、yolo框架的解读:

  • https://zhuanlan.zhihu.com/p/32525231

二、500问里目标检测解决的问题和yolo解读

三、基于YOLO的项目

3.1使用YOLOv3训练、使用Mask-RCNN训练、理解ResNet、模型部署、人脸识别、文本分类等:

  • https://github.com/StevenLei2017/AI_projects

3.2基于yolo3 与crnn 实现中文自然场景文字检测及识别

在这里插入图片描述

  • https://github.com/chineseocr/chineseocr

3.3 YOLOv3 in PyTorch > ONNX > CoreML > iOS

在这里插入图片描述

  • https://github.com/ultralytics/yolov3

3.4YoloV3/tiny-YoloV3+RaspberryPi3/Ubuntu LaptopPC+NCS/NCS2+USB Camera+Python+OpenVINO

在这里插入图片描述

  • https://github.com/PINTO0309/OpenVINO-YoloV3

四、YOLO模型压缩:

4.1、剪枝:

  • https://github.com/zbyuan/pruning_yolov3
  • https://github.com/coldlarry/YOLOv3-complete-pruning
  • https://github.com/Lam1360/YOLOv3-model-pruning
  • https://github.com/tanluren/yolov3-channel-and-layer-pruning

五、YOLO系列

5.1 Enriching Variety of Layer-wise Learning Information by Gradient Combination

ModelSizemAP@0.5BFLOPs
EfficientNet_b0-PRN416x41645.53.730
EfficientNet_b0-PRN320x32041.02.208
  • https://github.com/WongKinYiu/PartialResidualNetworks

5.2 Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving

在这里插入图片描述

  • https://github.com/jwchoi384/Gaussian_YOLOv3

5.3 YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network for Object Detection

Modelmodel SizemAP(voc 2007)computational cost(ops)
Tiny YOLOv2[13]60.5MB57.1%6.97B
Tiny YOLOv3[14]33.4MB58.4%5.52B
YOLO Nano4.0MB69.1%4.57B
  • https://arxiv.org/pdf/1910.01271.pdf
  • https://github.com/liux0614/yolo_nano

5.4YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers

DataSetmAPFPS
PASCAL VOC33.5721
COCO12.2621
  • https://arxiv.org/abs/1811.05588v1
  • https://github.com/reu2018dl/yolo-lite
  • https://mp.weixin.qq.com/s/xNaXPwI1mQsJ2Y7TT07u3g

5.5 SlimYOLOv3: Narrower, Faster and Better for Real-Time UAV Applications

在这里插入图片描述

  • https://arxiv.org/ftp/arxiv/papers/1907/1907.11093.pdf
  • https://github.com/PengyiZhang/SlimYOLOv3
  • https://mp.weixin.qq.com/s/fDOskKqG-fsJmhT0-tdtTg

5.6 Strongeryolo-pytorch - Pytorch implementation of Stronger-Yolo with channel-pruning

Performance on VOC2007 Test(mAP) after pruning
ModelBackboneMAPFlops(G)Params(M)
strongerv3Mobilev279.64.336.775
strongerv3-sparsedMobilev277.44.336.775
strongerv3-Pruned(30% pruned)Mobilev277.13.143.36
strongerv2Darknet5380.249.861.6
strongerv2-sparsedDarknet5378.149.861.6
strongerv2-Pruned(20% pruned)Darknet5376.849.845.2
  • https://github.com/wlguan/Stronger-yolo-pytorch

5.7 Learning Spatial Fusion for Single-Shot Object Detection

在这里插入图片描述

Systemtest-dev mAPTime (V100)Time (2080ti)
YOLOv3 60833.020ms24ms
YOLOv3 608+ BoFs37.020ms24ms
YOLOv3 608(ours baseline)38.820ms24ms
YOLOv3 608+ ASFF40.622ms28ms
YOLOv3 608+ ASFF*42.422ms29ms
YOLOv3 800+ ASFF*43.934ms40ms
  • https://arxiv.org/pdf/1911.09516.pdf
  • https://github.com/ruinmessi/ASFF

5.8 Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-20wUOyVv-1576938980960)(image/8.png)]

  • https://arxiv.org/pdf/1911.08287.pdf
  • https://github.com/Zzh-tju/DIoU-darknet
  • https://mp.weixin.qq.com/s/St5WevfcVt4RubJsY-ZEHw
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值