github
YOLO-Summary
YOLO源码:
- https://github.com/pjreddie/darknet
- https://github.com/AlexeyAB/darknet
非常推荐AlexeyAB的darknet改进版
论文: - https://pjreddie.com/media/files/papers/YOLOv3.pdf
YOLOv3复现代码合集涵盖 5 种常用深度学习框架:
TensorFlow
PyTorch
Keras
Caffe
MXNet
Project | Infernece | Train | Star |
---|
gluoncv | √ | √ | 3187 |
参考:
- https://zhuanlan.zhihu.com/p/50170492
- https://github.com/amusi/YOLO-Reproduce-Summary/blob/master/README.md
一、yolo框架的解读:
- https://zhuanlan.zhihu.com/p/32525231
二、500问里目标检测解决的问题和yolo解读
- 第八章 目标检测
- https://github.com/scutan90/DeepLearning-500-questions
三、基于YOLO的项目
3.1使用YOLOv3训练、使用Mask-RCNN训练、理解ResNet、模型部署、人脸识别、文本分类等:
- https://github.com/StevenLei2017/AI_projects
3.2基于yolo3 与crnn 实现中文自然场景文字检测及识别
![在这里插入图片描述](https://i-blog.csdnimg.cn/blog_migrate/94efeb4def40bc9fa81e506964b6fe35.png)
- https://github.com/chineseocr/chineseocr
3.3 YOLOv3 in PyTorch > ONNX > CoreML > iOS
![在这里插入图片描述](https://i-blog.csdnimg.cn/blog_migrate/b574b3a8ed15643ee63cef92f2b8b01a.png)
- https://github.com/ultralytics/yolov3
3.4YoloV3/tiny-YoloV3+RaspberryPi3/Ubuntu LaptopPC+NCS/NCS2+USB Camera+Python+OpenVINO
![在这里插入图片描述](https://i-blog.csdnimg.cn/blog_migrate/0f96b52fa04865461638906ff6044c30.png)
- https://github.com/PINTO0309/OpenVINO-YoloV3
四、YOLO模型压缩:
4.1、剪枝:
- https://github.com/zbyuan/pruning_yolov3
- https://github.com/coldlarry/YOLOv3-complete-pruning
- https://github.com/Lam1360/YOLOv3-model-pruning
- https://github.com/tanluren/yolov3-channel-and-layer-pruning
五、YOLO系列
5.1 Enriching Variety of Layer-wise Learning Information by Gradient Combination
Model | Size | mAP@0.5 | BFLOPs |
---|
EfficientNet_b0-PRN | 416x416 | 45.5 | 3.730 |
EfficientNet_b0-PRN | 320x320 | 41.0 | 2.208 |
- https://github.com/WongKinYiu/PartialResidualNetworks
5.2 Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving
![在这里插入图片描述](https://i-blog.csdnimg.cn/blog_migrate/06c4243eed870b7642ca5fcb6bf80d37.png)
- https://github.com/jwchoi384/Gaussian_YOLOv3
5.3 YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network for Object Detection
Model | model Size | mAP(voc 2007) | computational cost(ops) |
---|
Tiny YOLOv2[13] | 60.5MB | 57.1% | 6.97B |
Tiny YOLOv3[14] | 33.4MB | 58.4% | 5.52B |
YOLO Nano | 4.0MB | 69.1% | 4.57B |
- https://arxiv.org/pdf/1910.01271.pdf
- https://github.com/liux0614/yolo_nano
5.4YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers
DataSet | mAP | FPS |
---|
PASCAL VOC | 33.57 | 21 |
COCO | 12.26 | 21 |
- https://arxiv.org/abs/1811.05588v1
- https://github.com/reu2018dl/yolo-lite
- https://mp.weixin.qq.com/s/xNaXPwI1mQsJ2Y7TT07u3g
5.5 SlimYOLOv3: Narrower, Faster and Better for Real-Time UAV Applications
![在这里插入图片描述](https://i-blog.csdnimg.cn/blog_migrate/9c43071b7299627b94aa09ddda6bd9ef.png)
- https://arxiv.org/ftp/arxiv/papers/1907/1907.11093.pdf
- https://github.com/PengyiZhang/SlimYOLOv3
- https://mp.weixin.qq.com/s/fDOskKqG-fsJmhT0-tdtTg
5.6 Strongeryolo-pytorch - Pytorch implementation of Stronger-Yolo with channel-pruning
Performance on VOC2007 Test(mAP) after pruning
Model | Backbone | MAP | Flops(G) | Params(M) |
---|
strongerv3 | Mobilev2 | 79.6 | 4.33 | 6.775 |
strongerv3-sparsed | Mobilev2 | 77.4 | 4.33 | 6.775 |
strongerv3-Pruned(30% pruned) | Mobilev2 | 77.1 | 3.14 | 3.36 |
strongerv2 | Darknet53 | 80.2 | 49.8 | 61.6 |
strongerv2-sparsed | Darknet53 | 78.1 | 49.8 | 61.6 |
strongerv2-Pruned(20% pruned) | Darknet53 | 76.8 | 49.8 | 45.2 |
- https://github.com/wlguan/Stronger-yolo-pytorch
5.7 Learning Spatial Fusion for Single-Shot Object Detection
![在这里插入图片描述](https://i-blog.csdnimg.cn/blog_migrate/b4fff8e8067e146cc1b63d61973245d9.png)
System | test-dev mAP | Time (V100) | Time (2080ti) |
---|
YOLOv3 608 | 33.0 | 20ms | 24ms |
YOLOv3 608+ BoFs | 37.0 | 20ms | 24ms |
YOLOv3 608(ours baseline) | 38.8 | 20ms | 24ms |
YOLOv3 608+ ASFF | 40.6 | 22ms | 28ms |
YOLOv3 608+ ASFF* | 42.4 | 22ms | 29ms |
YOLOv3 800+ ASFF* | 43.9 | 34ms | 40ms |
- https://arxiv.org/pdf/1911.09516.pdf
- https://github.com/ruinmessi/ASFF
5.8 Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-20wUOyVv-1576938980960)(image/8.png)]](https://i-blog.csdnimg.cn/blog_migrate/57c05f5d92581f5bf7d28fa137c24654.png)
- https://arxiv.org/pdf/1911.08287.pdf
- https://github.com/Zzh-tju/DIoU-darknet
- https://mp.weixin.qq.com/s/St5WevfcVt4RubJsY-ZEHw