算法概念:算法简单来说就是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,也就是说算法告诉计算机怎么做,以此来解决问题。同一个问题存在多种算法来解决它,但是这些算法存在着优劣之分,好的算法速度快,效率高,占用空间小,差的算法不仅复杂难懂,而且效率低,对机器要求还高,当然,有时候算法之间存在一种互补关系,有些算法效率高,节省时间,但浪费空间,另外一些算法可能速度上慢些,但是空间比较节约,这时候 我们就应该根据实际要求,和具体情况来采取相应的算法来解决问题。
案例demo下载:http://download.csdn.net/download/csdn_aiyang/9943795
一、快速排序
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来,且在大部分真实世界的数据,可以决定设计的选择,减少所需时间的二次方项之可能性。
步骤:
从数列中挑出一个元素,称为 "基准"(pivot),重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
排序效果:
代码:
- //快速排序
- private void quickSort(int[] a ,int left,int right) {
- if(left < right){
- int i,j,t,temp;
- temp=a[left]; //temp中存的就是基准数
- i=left;
- j=right;
- while(i!=j)
- {
- //顺序很重要,要先从右边开始找
- while(a[j]>=temp && i<j)
- j--;
- //再找右边的
- while(a[i]<=temp && i<j)
- i++;
- //交换两个数在数组中的位置
- if(i<j)
- {
- t=a[i];
- a[i]=a[j];
- a[j]=t;
- }
- }
- //最终将基准数归位
- a[left]=a[i];
- a[i]=temp;
- quickSort(a,left,i-1);//继续处理左边的,这里是一个递归的过程
- quickSort(a,i+1,right);//继续处理右边的 ,这里是一个递归的过程
- }
- }
- quickSort(a,0,a.length-1);
二、归并排序
介绍:
归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
步骤:
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
设定两个指针,最初位置分别为两个已经排序序列的起始位置;
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
重复步骤3直到某一指针达到序列尾;
将另一序列剩下的所有元素直接复制到合并序列尾。
排序效果:
三、堆排序
介绍:
堆积排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
步骤:
比较复杂,自己上网查一下吧~
排序效果:
四、选择排序
介绍:
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此类推,直到所有元素均排序完毕。
排序效果:
代码:
- //选择排序
- public void selectSort(int[] array) {
- int min;
- int tmp = 0;
- for (int i = 0; i < array.length; i++) {
- min = array[i];
- for (int j = i; j < array.length; j++) {
- if (array[j] < min) {
- min = array[j];//最小值
- tmp = array[i];
- array[i] = min;
- array[j] = tmp;
- }
- }
- }
- }
五、冒泡排序
介绍:
冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)非常简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
步骤:
- 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
- 对每一对相邻元素作同样操作,从开始第一对到结尾的最后一对。在这一点,最后的元素会是最大的数。
- 针对所有的元素重复以上的步骤,除了最后一个。
- 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
代码:
- //冒泡
- private void pubbleSort(int[] numbers) {
- int temp;//记录临时变量
- int size = numbers.length;//数组大小
- for (int i = 0; i < size - 1; i++) {
- for (int j = i + 1; j < size; j++) {//索引不同的两层for循环
- if (numbers[i] < numbers[j]) {//交互数据从大到小排列顺序 大的放前面
- temp = numbers[i];
- numbers[i] = numbers[j];
- numbers[j] = temp;
- }
- }
- }
- }
排序效果:
六、插入排序
介绍:
插入排序(Insertion Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
步骤:
- 从第一个元素开始,该元素可以认为已经被排序;
- 取出下一个元素,在已经排序的元素序列中从后向前扫描;
- 如果该元素(已排序)大于新元素,将该元素移到下一位置;
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
- 将新元素插入到该位置中,重复步骤2。
排序代码:
- //直接插入
- private void InsertSort(int[] a) {
- long t1 = System.nanoTime();
- //直接插入排序
- for (int i = 1; i < a.length; i++) {
- //待插入元素
- int temp = a[i];
- int j;
- for (j = i - 1; j >= 0; j--) {
- //将大于temp的往后移动一位
- if (a[j] > temp) {
- a[j + 1] = a[j];
- } else {
- break;
- }
- }
- a[j + 1] = temp;//插入进来
- }
- }
七、希尔排序
介绍:
希尔排序,也称递减增量排序算法,是插入排序的一种高速而稳定的改进版本。基于插入排序的以下两点性质而提出改进方法的:
-
- 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;
- 但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位。
代码:
- //希尔排序
- private void HeerSort(int[] a) {
- int d = a.length / 2;
- while (true) {
- for (int i = 0; i < d; i++) {
- for (int j = i; j + d < a.length; j += d) {
- int temp;
- if (a[j] > a[j + d]) {
- temp = a[j];
- a[j] = a[j + d];
- a[j + d] = temp;
- }
- }
- }
- if (d == 1) {
- break;
- }
- d--;
- }
- }
(参考)同一手机效率跑分: 15052